Large-scale battery energy storage systems (BESS) play a pivotal role in advancing sustainability through their widespread applications in electrified transportation, power grids, and renewable energy systems. However, achieving optimal power management for these systems poses significant computational challenges. To address this, we propose a scalable approach that partitions the cells of a large-scale BESS into clusters based on state-of-charge (SoC), temperature, and internal resistance. Each cluster is represented by a model that approximates its collective SoC and temperature dynamics and overall power losses during charging and discharging. Using these clusters, we formulate a receding-horizon optimal power control problem to minimize power losses while promoting SoC and temperature balancing. The optimization determines a power quota for each cluster, which is then distributed among its constituent cells. This clustering approach drastically reduces computational costs by working with a smaller number of clusters instead of individual cells, enabling scalability for large-scale BESS. Simulations show a computational overhead reduction of over 60% for small-scale and 98% for large-scale BESS compared to conventional cell-level optimization. Experimental validation using a 20-cell prototype further underscores the approach's effectiveness and practical utility.
more »
« less
Optimal Power Management of Battery Energy Storage Systems via Ensemble Kalman Inversion
Optimal power management of battery energy storage systems (BESS) is crucial for their safe and efficient operation. Numerical optimization techniques are frequently utilized to solve the optimal power management problems. However, these techniques often fall short of delivering real-time solutions for large-scale BESS due to their computational complexity. To address this issue, this paper proposes a computationally efficient approach. We introduce a new set of decision variables called power-sharing ratios corresponding to each cell, indicating their allocated power share from the output power demand. We then formulate an optimal power management problem to minimize the system-wide power losses while ensuring compliance with safety, balancing, and power supply-demand match constraints. To efficiently solve this problem, a parameterized control policy is designed and leveraged to transform the optimal power management problem into a parameter estimation problem. We then implement the ensemble Kalman inversion to estimate the optimal parameter set. The proposed approach significantly reduces computational requirements due to 1) the much lower dimensionality of the decision parameters and 2) the estimation treatment of the optimal power management problem. Finally, we conduct extensive simulations to validate the effectiveness of the proposed approach. The results show promise in accuracy and computation time compared with explored numerical optimization techniques.
more »
« less
- Award ID(s):
- 1847651
- PAR ID:
- 10566966
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-8265-5
- Page Range / eLocation ID:
- 687 to 694
- Format(s):
- Medium: X
- Location:
- Toronto, ON, Canada
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cellular network configuration is critical for network performance. Current practice is labor-intensive, errorprone, and far from optimal. To automate efficient cellular network configuration, in this work, we propose an onlinelearning-based joint-optimization approach that addresses a few specific challenges: limited data availability, convoluted sample data, highly complex optimization due to interactions among neighboring cells, and the need to adapt to network dynamics. In our approach, to learn an appropriate utility function for a cell, we develop a neural-network-based model that addresses the convoluted sample data issue and achieves good accuracy based on data aggregation. Based on the utility function learned, we formulate a global network configuration optimization problem. To solve this high-dimensional nonconcave maximization problem, we design a Gibbs-sampling-based algorithm that converges to an optimal solution when a technical parameter is small enough. Furthermore, we design an online scheme that updates the learned utility function and solves the corresponding maximization problem efficiently to adapt to network dynamics. To illustrate the idea, we use the case study of pilot power configuration. Numerical results illustrate the effectiveness of the proposed approach.more » « less
-
Cellular network configuration is critical for network performance. Current practice is labor-intensive, errorprone, and far from optimal. To automate efficient cellular network configuration, in this work, we propose an onlinelearning-based joint-optimization approach that addresses a few specific challenges: limited data availability, convoluted sample data, highly complex optimization due to interactions among neighboring cells, and the need to adapt to network dynamics. In our approach, to learn an appropriate utility function for a cell, we develop a neural-network-based model that addresses the convoluted sample data issue and achieves good accuracy based on data aggregation. Based on the utility function learned, we formulate a global network configuration optimization problem. To solve this high-dimensional nonconcave maximization problem, we design a Gibbs-samplingbased algorithm that converges to an optimal solution when a technical parameter is small enough. Furthermore, we design an online scheme that updates the learned utility function and solves the corresponding maximization problem efficiently to adapt to network dynamics. To illustrate the idea, we use the case study of pilot power configuration. Numerical results illustrate the effectiveness of the proposed approach.more » « less
-
In modeling battery energy storage systems (BESS) in power systems, binary variables are used to represent the complementary nature of charging and discharging. A conventional approach for these BESS optimization problems is to relax binary variables and convert the problem into a linear program. However, such linear programming relaxation models can yield unrealistic fractional solutions, such as simultaneous charging and discharging. In this paper, we develop a regularized mixed-integer programming (MIP) model for the optimal power flow (OPF) problem with BESS. We prove that, under mild conditions, the proposed regularized model admits a zero integrality gap with its linear programming relaxation; hence, it can be solved efficiently. By studying the properties of the regularized MIP model, we show that its optimal solution is also near optimal to the original OPF problem with BESS, thereby providing a valid and tight upper bound for the OPF problem with BESS. The use of the regularized MIP model allows us to solve a trilevel [Formula: see text]-[Formula: see text]-[Formula: see text] network contingency problem, which is otherwise intractable to solve. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: N. Jiang (as a graduate student at the Georgia Institute of Technology) and W. Xie were supported in part by the National Science Foundation [Grant 2246414] and the Office of Naval Research [Grant N00014-24-1-2066]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2024.0771 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2024.0771 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .more » « less
-
This work addresses inverse linear optimization, where the goal is to infer the unknown cost vector of a linear program. Specifically, we consider the data-driven setting in which the available data are noisy observations of optimal solutions that correspond to different instances of the linear program. We introduce a new formulation of the problem that, compared with other existing methods, allows the recovery of a less restrictive and generally more appropriate admissible set of cost estimates. It can be shown that this inverse optimization problem yields a finite number of solutions, and we develop an exact two-phase algorithm to determine all such solutions. Moreover, we propose an efficient decomposition algorithm to solve large instances of the problem. The algorithm extends naturally to an online learning environment where it can be used to provide quick updates of the cost estimate as new data become available over time. For the online setting, we further develop an effective adaptive sampling strategy that guides the selection of the next samples. The efficacy of the proposed methods is demonstrated in computational experiments involving two applications: customer preference learning and cost estimation for production planning. The results show significant reductions in computation and sampling efforts. Summary of Contribution: Using optimization to facilitate decision making is at the core of operations research. This work addresses the inverse problem (i.e., inverse optimization), which aims to infer unknown optimization models from decision data. It is, conceptually and computationally, a challenging problem. Here, we propose a new formulation of the data-driven inverse linear optimization problem and develop an efficient decomposition algorithm that can solve problem instances up to a scale that has not been addressed previously. The computational performance is further improved by an online adaptive sampling strategy that substantially reduces the number of required data points.more » « less
An official website of the United States government

