skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scalable Optimal Power Management for Large-Scale Battery Energy Storage Systems
Large-scale battery energy storage systems (BESS) play a pivotal role in advancing sustainability through their widespread applications in electrified transportation, power grids, and renewable energy systems. However, achieving optimal power management for these systems poses significant computational challenges. To address this, we propose a scalable approach that partitions the cells of a large-scale BESS into clusters based on state-of-charge (SoC), temperature, and internal resistance. Each cluster is represented by a model that approximates its collective SoC and temperature dynamics and overall power losses during charging and discharging. Using these clusters, we formulate a receding-horizon optimal power control problem to minimize power losses while promoting SoC and temperature balancing. The optimization determines a power quota for each cluster, which is then distributed among its constituent cells. This clustering approach drastically reduces computational costs by working with a smaller number of clusters instead of individual cells, enabling scalability for large-scale BESS. Simulations show a computational overhead reduction of over 60% for small-scale and 98% for large-scale BESS compared to conventional cell-level optimization. Experimental validation using a 20-cell prototype further underscores the approach's effectiveness and practical utility.  more » « less
Award ID(s):
1847651
PAR ID:
10566965
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Transportation Electrification
Volume:
10
Issue:
3
ISSN:
2372-2088
Page Range / eLocation ID:
5002 to 5016
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optimal power management of battery energy storage systems (BESS) is crucial for their safe and efficient operation. Numerical optimization techniques are frequently utilized to solve the optimal power management problems. However, these techniques often fall short of delivering real-time solutions for large-scale BESS due to their computational complexity. To address this issue, this paper proposes a computationally efficient approach. We introduce a new set of decision variables called power-sharing ratios corresponding to each cell, indicating their allocated power share from the output power demand. We then formulate an optimal power management problem to minimize the system-wide power losses while ensuring compliance with safety, balancing, and power supply-demand match constraints. To efficiently solve this problem, a parameterized control policy is designed and leveraged to transform the optimal power management problem into a parameter estimation problem. We then implement the ensemble Kalman inversion to estimate the optimal parameter set. The proposed approach significantly reduces computational requirements due to 1) the much lower dimensionality of the decision parameters and 2) the estimation treatment of the optimal power management problem. Finally, we conduct extensive simulations to validate the effectiveness of the proposed approach. The results show promise in accuracy and computation time compared with explored numerical optimization techniques. 
    more » « less
  2. In modeling battery energy storage systems (BESS) in power systems, binary variables are used to represent the complementary nature of charging and discharging. A conventional approach for these BESS optimization problems is to relax binary variables and convert the problem into a linear program. However, such linear programming relaxation models can yield unrealistic fractional solutions, such as simultaneous charging and discharging. In this paper, we develop a regularized mixed-integer programming (MIP) model for the optimal power flow (OPF) problem with BESS. We prove that, under mild conditions, the proposed regularized model admits a zero integrality gap with its linear programming relaxation; hence, it can be solved efficiently. By studying the properties of the regularized MIP model, we show that its optimal solution is also near optimal to the original OPF problem with BESS, thereby providing a valid and tight upper bound for the OPF problem with BESS. The use of the regularized MIP model allows us to solve a trilevel [Formula: see text]-[Formula: see text]-[Formula: see text] network contingency problem, which is otherwise intractable to solve. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: N. Jiang (as a graduate student at the Georgia Institute of Technology) and W. Xie were supported in part by the National Science Foundation [Grant 2246414] and the Office of Naval Research [Grant N00014-24-1-2066]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2024.0771 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2024.0771 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ . 
    more » « less
  3. Optimization problems that involve topology opti- mization in scenarios with large scale outages, such as post- disaster restoration or public safety power shutoff planning, are very challenging to solve. Using simple power flow representa- tions such as DC power flow or network flow models results in low quality solutions which requires significantly higher- than-predicted load shed to become AC feasible. Recent work has shown that formulations based on the Second Order Cone (SOC) power flow formulation find very high quality solutions with low load shed, but the computational burden of these formulations remains a significant challenge. With the aim of reducing computational time while maintaining high solution quality, this work explores formulations which replace the conic constraints with a small number of linear cuts. The goal of this approach is not to find an exact power flow solution, but rather to identify good binary decisions, where the power flow can be resolved after the binary variables are fixed. We find that a simple reformulation of the Second Order Cone Optimal Power Shutoff problem can greatly improve the solution speed, but that a full linearization of the SOC voltage cone equation results in an overestimation of the amount of power that can be delivered to loads. 
    more » « less
  4. Power conversion is a significant cost in second-use battery energy storage systems (2-BESS). 2-BESS is a sustainable pathway for retired batteries of electrical vehicles (EV) to provide energy storage for the grid and EV fast charging. We present and demonstrate the optimization of Lite-Sparse Hierarchical Partial Power Processing (LS-HiPPP) for battery degradation over the potential lifetime of the 2-BESS. LS-HiPPP has a significantly better performance tradeoff with lower power processing than other partial and full power processing architectures. 
    more » « less
  5. Collective cell migration is an essential process throughout the lives of multicellular organisms, for example in embryonic development, wound healing and tumour metastasis. Substrates or interfaces associated with these processes are typically curved, with radii of curvature comparable to many cell lengths. Using both artificial geometries and lung alveolospheres derived from human induced pluripotent stem cells, here we show that cells sense multicellular-scale curvature and that it plays a role in regulating collective cell migration. As the curvature of a monolayer increases, cells reduce their collectivity and the multicellular flow field becomes more dynamic. Furthermore, hexagonally shaped cells tend to aggregate in solid-like clusters surrounded by non-hexagonal cells that act as a background fluid. We propose that cells naturally form hexagonally organized clusters to minimize free energy, and the size of these clusters is limited by a bending energy penalty. We observe that cluster size grows linearly as sphere radius increases, which further stabilizes the multicellular flow field and increases cell collectivity. As a result, increasing curvature tends to promote the fluidity in multicellular monolayer. Together, these findings highlight the potential for a fundamental role of curvature in regulating both spatial and temporal characteristics of three-dimensional multicellular systems. 
    more » « less