skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Ultralight dark matter detection with levitated ferromagnets
Levitated ferromagnets act as ultraprecise magnetometers, which can exhibit high quality factors due to their excellent isolation from the environment. These instruments can be utilized in searches for ultralight dark matter candidates, such as axionlike dark matter or dark-photon dark matter. In addition to being sensitive to an axion-photon coupling or kinetic mixing, which produce physical magnetic fields, ferromagnets are also sensitive to the effective magnetic field (or “axion wind”) produced by an axion-electron coupling. While the dynamics of a levitated ferromagnet in response to a dc magnetic field have been well studied, all of these couplings would produce ac fields. In this work, we study the response of a ferromagnet to an applied ac magnetic field and use these results to project their sensitivity to axion and dark-photon dark matter. We pay special attention to the direction of motion induced by an applied ac field, in particular, whether it precesses around the applied field (similar to an electron spin) or librates in the plane of the field (similar to a compass needle). We show that existing levitated ferromagnet setups can already have comparable sensitivity to an axion-electron coupling as comagnetometer or torsion balance experiments. In addition, future setups can become sensitive probes of axion-electron coupling, dark-photon kinetic mixing, and axion-photon coupling, for ultralight dark matter masses < 5feV.  more » « less
Award ID(s):
2145162
PAR ID:
10566975
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review D
Volume:
110
ISSN:
2470-0010
Page Range / eLocation ID:
115029
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Earth can act as a transducer to convert ultralight bosonic dark matter (axions and hidden photons) into an oscillating magnetic field with a characteristic pattern across its surface. Here we describe the first results of a dedicated experiment, the Search for Noninteracting Particles Experimental Hunt, that aims to detect such dark-matter-induced magnetic-field patterns by performing correlated measurements with a network of magnetometers in relatively quiet magnetic environments (in the wilderness far from human-generated magnetic noise). Our experiment constrains parameter space describing hidden-photon and axion dark matter with Compton frequencies in the 0.5–5.0 Hz range. Limits on the kinetic-mixing parameter for hidden-photon dark matter represent the best experimental bounds to date in this frequency range. 
    more » « less
  2. The nature of dark matter, the invisible substance making up over 80% of the matter in the universe, is one of the most fundamental mysteries of modern physics. Ultralight bosons such as axions, axion-like particles, or dark photons could make up most of the dark matter. Couplings between such bosons and nuclear spins may enable their direct detection via nuclear magnetic resonance (NMR) spectroscopy: As nuclear spins move through the galactic dark-matter halo, they couple to dark matter and behave as if they were in an oscillating magnetic field, generating a dark-matter–driven NMR signal. As part of the cosmic axion spin precession experiment (CASPEr), an NMR-based dark-matter search, we use ultralow-field NMR to probe the axion-fermion “wind” coupling and dark-photon couplings to nuclear spins. No dark matter signal was detected above background, establishing new experimental bounds for dark matter bosons with masses ranging from 1.8 × 10 −16 to 7.8 × 10 −14 eV. 
    more » « less
  3. A<sc>bstract</sc> The presence of a plethora of light spin 0 and spin 1 fields is motivated in a number of BSM scenarios, such as the axiverse. The study of the interactions of such light bosonic fields with the Standard Model has focused mostly on interactions involving only one such field, such as the axion (ϕ) coupling to photons,$$\phi F\widetilde{F}$$, or the kinetic mixing between photon and the dark photon,FFD. In this work, we continue the exploration of interactions involving two light BSM fields and the standard model, focusing on the mixed axion-photon-dark-photon interaction$$\phi F{\widetilde{F}}_{D}$$. If either the axion or dark photon are dark matter, we show that this interaction leads to conversion of the CMB photons into a dark sector particle, leading to a distortion in the CMB spectrum. We present the details of these unique distortion signatures and the resulting constraints on the$$\phi F{\widetilde{F}}_{D}$$coupling. In particular, we find that for a wide range of masses, the constraints from these effect are stronger than on the more widely studied axion-photon coupling. 
    more » « less
  4. Recent advances in quantum sensors, including atomic clocks, enable searches for a broad range of dark matter candidates. The question of the dark matter distribution in the Solar system critically affects the reach of dark matter direct detection experiments. Partly motivated by the NASA Deep Space Atomic Clock (DSAC), we show that space quantum sensors present new opportunities for ultralight dark matter searches, especially for dark matter states bound to the Sun. We show that space quantum sensors can probe unexplored parameter space of ultralight dark matter, covering theoretical relaxion targets motivated by naturalness and Higgs mixing. If an atomic clock were able to make measurements on the interior of the solar system, it could probe this highly sensitive region directly and set very strong constraints on the existence of such a bound-state halo in our solar system. We present sensitivity projections for space-based probes of ultralight dark matter which couples to electron, photon, and gluon fields, based on current and future atomic, molecular, and nuclear clocks. 
    more » « less
  5. A<sc>bstract</sc> We propose to use the nuclear spin excitation in the ferromagnetic A1phase of the superfluid3He for the axion dark matter detection. This approach is striking in that it is sensitive to the axion-nucleon coupling, one of the most important features of the QCD axion introduced to solve the strong CP problem. We review a quantum mechanical description of the nuclear spin excitation and apply it to the estimation of the axion-induced spin excitation rate. We also describe a possible detection method of the spin excitation in detail and show that the combination of the squeezing of the final state with the Josephson parametric amplifier and the homodyne measurement can enhance the sensitivity. It turns out that this approach gives good sensitivity to the axion dark matter with the mass of$$ \mathcal{O} $$ O (1) μeV depending on the size of the external magnetic field. We estimate the parameters of experimental setups, e.g., the detector volume and the amplitude of squeezing, required to reach the QCD axion parameter space. 
    more » « less