skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 31, 2025

Title: A Multifidelity Machine Learning Based Semi-Lagrangian Finite Volume Scheme for Linear Transport Equations and the Nonlinear Vlasov–Poisson System
Machine-learning (ML) based discretization has been developed to simulate complex partial differential equations (PDEs) with tremendous success across various fields. These learned PDE solvers can effectively resolve the underlying solution structures of interest and achieve a level of accuracy which often requires an order-of-magnitude finer grid for a conventional numerical method using polynomial-based approximations. In a previous work [13], we introduced a learned finite volume discretization that further incorporates the semi-Lagrangian (SL) mechanism, enabling larger CFL numbers for stability. However, the efficiency and effectiveness of such a methodology heavily rely on the availability of abundant high-resolution training data, which can be prohibitively expensive to obtain. To address this challenge, in this paper, we propose a novel multifidelity MLbased SL method for transport equations. This method leverages a combination of a small amount of high-fidelity data and sufficient but cheaper low-fidelity data. The approach is designed based on a composite convolutional neural network architecture that explores the inherent correlation between high-fidelity and low-fidelity data. The proposed method demonstrates the capability to achieve a reasonable level of accuracy, particularly in scenarios where a single-fidelity model fails to generalize effectively. We further extend the method to the nonlinear Vlasov--Poisson system by employing high-order Runge--Kutta exponential integrators. A collection of numerical tests are provided to validate the efficiency and accuracy of the proposed method.  more » « less
Award ID(s):
2111383
PAR ID:
10567020
Author(s) / Creator(s):
; ;
Publisher / Repository:
SIAM
Date Published:
Journal Name:
Multiscale Modeling & Simulation
Volume:
22
Issue:
4
ISSN:
1540-3459
Page Range / eLocation ID:
1421 to 1448
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigate the temporal accuracy of two generalized‐ schemes for the incompressible Navier‐Stokes equations. In a widely‐adopted approach, the pressure is collocated at the time steptn + 1while the remainder of the Navier‐Stokes equations is discretized following the generalized‐ scheme. That scheme has been claimed to besecond‐order accurate in time. We developed a suite of numerical code using inf‐sup stable higher‐order non‐uniform rational B‐spline (NURBS) elements for spatial discretization. In doing so, we are able to achieve high spatial accuracy and to investigate asymptotic temporal convergence behavior. Numerical evidence suggests that onlyfirst‐order accuracyis achieved, at least for the pressure, in this aforesaid temporal discretization approach. On the other hand, evaluating the pressure at the intermediate time step recovers second‐order accuracy, and the numerical implementation is simplified. We recommend this second approach as the generalized‐ scheme of choice when integrating the incompressible Navier‐Stokes equations. 
    more » « less
  2. In this paper, we consider numerical approximations for the viscous Cahn–Hilliard equa- tion with hyperbolic relaxation. This type of equations processes energy-dissipative struc- ture. The main challenge in solving such a diffusive system numerically is how to develop high order temporal discretization for the hyperbolic and nonlinear terms, allowing large time-marching step, while preserving the energy stability, i.e. the energy dissipative structure at the time-discrete level. We resolve this issue by developing two second-order time-marching schemes using the recently developed ‘‘Invariant Energy Quadratization’’ approach where all nonlinear terms are discretized semi-explicitly. In each time step, one only needs to solve a symmetric positive definite (SPD) linear system. All the proposed schemes are rigorously proven to be unconditionally energy stable, and the second-order convergence in time has been verified by time step refinement tests numerically. Various 2D and 3D numerical simulations are presented to demonstrate the stability, accuracy, and efficiency of the proposed schemes. 
    more » « less
  3. This study introduces a novel method to enhance numerical simulation accuracy for high-speed flows by refining the weighted essentially non-oscillatory (WENO) flux with higher-order corrections like the modified weighted compact scheme (MWCS). Numerical experiments demonstrate improved sharpness in capturing shock waves and stability in complex conditions like two interacting blast waves. Key highlights include simultaneous capture of small-scale smooth fluctuations and shock waves with precision surpassing the original WENO and MWCS methods. Despite the significantly improved accuracy, the extra computational cost brought by the new method is only marginally increased compared to the original WENO, and it outperforms MWCS in both accuracy and efficiency. Overall, this method enhances simulation fidelity and effectively balances accuracy and computational efficiency across various problems. 
    more » « less
  4. Abstract In this article we study the stability of explicit finite difference discretization of advection–diffusion equations (ADE) with arbitrary order of accuracy in the context of method of lines. The analysis first focuses on the stability of the system of ordinary differential equations that is obtained by discretizing the ADE in space and then extends to fully discretized methods in combination with explicit Runge–Kutta methods. In particular, we prove that all stable semi‐discretization of the ADE leads to a conditionally stable fully discretized method as long as the time‐integrator is at least first‐order accurate, whereas high‐order spatial discretization of the advection equation cannot yield a stable method if the temporal order is too low. In the second half of the article, the analysis and the stability results are extended to a partially dissipative wave system, which serves as a model for common practice in many fluid mechanics applications that incorporate a viscous stress in the momentum equation but no heat dissipation in the energy equation. Finally, the major theoretical predictions are verified by numerical examples. 
    more » « less
  5. Consider the scattering of a time-harmonic acoustic plane wave by a bounded elastic obstacle which is immersed in a homogeneous acoustic medium. This paper is concerned with an inverse acoustic-elastic interaction problem, which is to determine the location and shape of the elastic obstacle by using either the phased or phaseless far-field data. By introducing the Helmholtz decomposition, the model problem is reduced to a coupled boundary value problem of the Helmholtz equations. The jump relations are studied for the second derivatives of the single-layer potential in order to deduce the corresponding boundary integral equations. The well-posedness is discussed for the solution of the coupled boundary integral equations. An efficient and high order Nyström-type discretization method is proposed for the integral system. A numerical method of nonlinear integral equations is developed for the inverse problem. For the case of phaseless data, we show that the modulus of the far-field pattern is invariant under a translation of the obstacle. To break the translation invariance, an elastic reference ball technique is introduced. We prove that the inverse problem with phaseless far-field pattern has a unique solution under certain conditions. In addition, a numerical method of the reference ball technique based nonlinear integral equations is proposed for the phaseless inverse problem. Numerical experiments are presented to demonstrate the effectiveness and robustness of the proposed methods. 
    more » « less