skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Response of Root Growth and Development to Nitrogen and Potassium Deficiency as well as microRNA-Mediated Mechanism in Peanut (Arachis hypogaea L.)
The mechanism of miRNA-mediated root growth and development in response to nutrient deficiency in peanut (Arachis hypogaeaL.) is still unclear. In the present study, we found that both nitrogen (N) and potassium (K) deficiency resulted in a significant reduction in plant growth, as indicated by the significantly decreased dry weight of both shoot and root tissues under N or K deficiency. Both N and K deficiency significantly reduced the root length, root surface area, root volume, root vitality, and weakened root respiration, as indicated by the reduced O2consuming rate. N deficiency significantly decreased primary root length and lateral root number, which might be associated with the upregulation of miR160, miR167, miR393, and miR396, and the downregulation of AFB3 and GRF. The primary and lateral root responses to K deficiency were opposite to that of the N deficiency condition. The upregulated miR156, miR390, NAC4, ARF2, and AFB3, and the downregulated miR160, miR164, miR393, and SPL10 may have contributed to the growth of primary roots and lateral roots under K deficiency. Overall, roots responded differently to the N or K deficiency stresses in peanuts, potentially due to the miRNA-mediated pathway and mechanism.  more » « less
Award ID(s):
1658709
PAR ID:
10567094
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Plant Science
Volume:
12
ISSN:
1664-462X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the mechanism of crop response to nitrogen (N) deficiency is very important for developing sustainable agriculture. In addition, it is unclear if the microRNA-mediated mechanism related to root growth complies with a common mechanism in monocots and dicots under N deficiency. Therefore, the root morpho-physiological characteristics and microRNA-mediated mechanisms were studied under N deficiency in wheat (Triticum aestivumL.) and cotton (Gossypium hirsutumL.). For both crops, shoot dry weight, plant dry weight and total leaf area as well as some physiological traits, i.e., the oxygen consuming rate in leaf and root, the performance index based on light energy absorption were significantly decreased after 8 days of N deficiency. Although N deficiency did not significantly impact the root biomass, an obvious change on the root morphological traits was observed in both wheat and cotton. After 8 days of treatment with N deficiency, the total root length, root surface area, root volume of both crops showed an opposite trend with significantly decreasing in wheat but significantly increasing in cotton, while the lateral root density was significantly increased in wheat but significantly decreased in cotton. At the same time, the seminal root length in wheat and the primary root length in cotton were increased after 8 days of N deficiency treatment. Additionally, the two crops had different root regulatory mechanisms of microRNAs (miRNAs) to N deficiency. In wheat, the expressions of miR167, miR319, miR390, miR827, miR847, and miR165/166 were induced by N treatment; these miRNAs inhibited the total root growth but promoted the seminal roots growth and lateral root formation to tolerate N deficiency. In cotton, the expressions of miR156, miR167, miR171, miR172, miR390, miR396 were induced and the expressions of miR162 and miR393 were inhibited; which contributed to increasing in the total root length and primary root growth and to decreasing in the lateral root formation to adapt the N deficiency. In conclusion, N deficiency significantly affected the morpho-physiological characteristics of roots that were regulated by miRNAs, but the miRNA-mediated mechanisms were different in wheat and cotton. 
    more » « less
  2. SUMMARY The conservation of GOLVEN (GLV)/ROOT MERISTEM GROWTH FACTOR (RGF) peptide encoding genes across plant genomes capable of forming roots or root‐like structures underscores their potential significance in the terrestrial adaptation of plants. This study investigates the function and role of GOLVEN peptide‐coding genes inMedicago truncatula. Five out of fifteen GLV/RGF genes were notably upregulated during nodule organogenesis and were differentially responsive to nitrogen deficiency and auxin treatment. Specifically, the expression ofMtGLV9andMtGLV10at nodule initiation sites was contingent upon the NODULE INCEPTION transcription factor. Overexpression of these five nodule‐induced GLV genes in hairy roots ofM. truncatulaand application of their synthetic peptide analogues led to a decrease in nodule count by 25–50%. Uniquely, the GOLVEN10 peptide altered the positioning of the first formed lateral root and nodule on the primary root axis, an observation we term ‘noduletaxis’; this decreased the length of the lateral organ formation zone on roots. Histological section of roots treated with synthetic GOLVEN10 peptide revealed an increased cell number within the root cortical cell layers without a corresponding increase in cell length, leading to an elongation of the root likely introducing a spatiotemporal delay in organ formation. At the transcription level, the GOLVEN10 peptide suppressed expression of microtubule‐related genes and exerted its effects by changing expression of a large subset of Auxin responsive genes. These findings advance our understanding of the molecular mechanisms by which GOLVEN peptides modulate root morphology, nodule ontogeny, and interactions with key transcriptional pathways. 
    more » « less
  3. Abstract Fine root litter is a primary source of soil organic matter (SOM), which is a globally important pool of C that is responsive to climate change. We previously established that ~20 years of experimental nitrogen (N) deposition has slowed fine root decay and increased the storage of soil carbon (C; +18%) across a widespread northern hardwood forest ecosystem. However, the microbial mechanisms that have directly slowed fine root decay are unknown. Here, we show that experimental N deposition has decreased the relative abundance of Agaricales fungi (−31%) and increased that of partially ligninolytic Actinobacteria (+24%) on decaying fine roots. Moreover, experimental N deposition has increased the relative abundance of lignin‐derived compounds residing in SOM (+53%), and this biochemical response is significantly related to shifts in both fungal and bacterial community composition. Specifically, the accumulation of lignin‐derived compounds in SOM is negatively related to the relative abundance of ligninolyticMycenaandKuehneromycesfungi, and positively related to Microbacteriaceae. Our findings suggest that by altering the composition of microbial communities on decaying fine roots such that their capacity for lignin degradation is reduced, experimental N deposition has slowed fine root litter decay, and increased the contribution of lignin‐derived compounds from fine roots to SOM. The microbial responses we observed may explain widespread findings that anthropogenic N deposition increases soil C storage in terrestrial ecosystems. More broadly, our findings directly link composition to function in soil microbial communities, and implicate compositional shifts in mediating biogeochemical processes of global significance. 
    more » « less
  4. ABSTRACT Plant roots are the critical interface between plants, soil, and microorganisms, and respond dynamically to changes in water availability. Although anatomical adaptations of roots to water stress (e.g., the formation of root cortical aerenchyma) are well documented, it remains unclear whether these responses manifest along the length of individual roots under both water deficiency and water overabundance. We investigated the anatomical responses ofTripsacum dactyloidesL. to both drought and waterlogging stress at high spatial resolution. Nodal roots were segmented into one‐centimeter sections from the tip to the base, allowing us to pinpoint regions of maximal anatomical change. Both stressors overall increased the proportion of root cortical aerenchyma, but metaxylem responses differed: waterlogging increased the proportion of the stele that was occupied by metaxylem with fewer but larger vessels. Drought significantly increased root hair formation within two centimeters of the root tip. The most pronounced anatomical changes occurred 3–7 cm from the root tip, where cortical cell density declined as aerenchyma expanded. These findings highlight spatial variation in root anatomical responses to water stress and provide a framework that can inform sampling protocols for various other data types where sampling effort is limiting (e.g., microbiome, transcriptome, proteome). 
    more » « less
  5. ABSTRACT Roots contribute a large fraction of CO2efflux from soils, yet the extent to which global change factors affect root‐derived fluxes is poorly understood. We investigated how red maple (Acer rubrum) and red oak (Quercus rubra) root biomass and respiration respond to long‐term (15 years) soil warming, nitrogen addition, or their combination in a temperate forest. We found that ecosystem root respiration was decreased by 40% under both single‐factor treatments (nitrogen addition or warming) but not under their combination (heated × nitrogen). This response was driven by the reduction of mass‐specific root respiration under warming and a reduction in maple root biomass in both single‐factor treatments. Mass‐specific root respiration rates for both species acclimated to soil warming, resulting in a 43% reduction, but were not affected by N addition or the combined heated × N treatment. Notably, the addition of nitrogen to warmed soils alleviated thermal acclimation and returned mass‐specific respiration rates to control levels. Oak roots contributed disproportionately to ecosystem root respiration despite the decrease in respiration rates as their biomass was maintained or enhanced under warming and nitrogen addition. In contrast, maple root respiration rates were consistently higher than oak, and this difference became critical in the heated × nitrogen treatment, where maple root biomass increased, contributing significantly more CO2relative to single‐factor treatments. Our findings highlight the importance of accounting for the root component of respiration when assessing soil carbon loss in response to global change and demonstrate that combining warming and N addition produces effects that cannot be predicted by studying these factors in isolation. 
    more » « less