skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Probing the impact of oxygen negative ions on the self-organized pattern in 1 atm DC glow with liquid anode
Abstract In an atmospheric DC glow discharge with liquid anode, the plasma attachment under certain conditions self-organize into coherent patterns at the anode. Optical emission spectroscopy revealed that attachment emission consists primarily of the second positive system of nitrogen N2(C-B) whose excitation energy is low and sensitive to the change of electron energy distribution. Besides the electrons, negative ions can also accumulate in the anode sheath and affect the local space charge. It has been conjectured that these negative ions play a role in pattern formation at the anode surface. In this work, the role of oxygen negative ions was explored. It was found that the establishment of anode patterns requires at least a 7 % volume fraction of oxygen in the ambient gas. Results showed that at least in this work, O2- is the dominant negative ion species and has a density ~10^13 cm^-3. While the presence of oxygen appears crucial to pattern formation, this study indicated that the mere presence of the negative ions itself was not sufficient for pattern formation, suggesting a more complex mechanism involving electronegative species must be present. In fact, it was found that even when as many as 67 % of negative ions in the plasma were detached, no obvious geometry changes were observed in the self-organized pattern.  more » « less
Award ID(s):
2206039
PAR ID:
10567218
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Plasma Sources Science and Technology
ISSN:
0963-0252
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Self-Organized Patterns (SOPs) at plasma-liquid interface in atmospheric pressure plasma discharges refer to the formation of intricate and puzzling structures due to the interplay of electrodynamic and hydrodynamic processes. Studies conducted to date have shown that this phenomenon results in the formation of distinctive patterns such as circular ring, star, gear, dots, spikes, etc., and primarily depends on working gas, electrolyte type, gap distance, current, conductivity, etc. However, an adequate understanding of how these patterns change from one type to another is still not available. This study aims to elucidate the influence of initial liquid conductance ( σ i ) on the temporal evolution of SOPs in liquid-anode discharges. The discharge was generated in a pin-to-liquid anode configuration at a constant helium (He) flow rate of 500 sccm and DC applied voltage of 6 kV at a gap distance of 12 mm. Through the gradual increment of σ i from 1.8 μ S to 4820 μ S, we observe that the trend in the evolution of SOPS takes place as solid discs, spikes, dots, rings, double rings, and stars. The continuous formation of reactive species onto the liquid anode in all conductive solutions results in a decrease in pH, an increase in bulk liquid temperature, and an increase in total dissolved solutes, and these have been confirmed through experimental measurements. Observations using optical emission spectroscopy show that the electrons at the plasma-liquid interface participate in the reduction of cations followed by their excitation & ionization due to which electron density as well as emissions from excited species (mainly hydroxyl radicals & excited nitrogen) decrease with time. Our investigation provides experimental evidence on the presence of cations at the plasma-liquid interface required for SOP formation. 
    more » « less
  2. Abstract The interactions between plasma and liquid solutions give rise to the formation of chemically reactive species useful for many applications, but the mass transport in the interfacial region is usually limited and not fully understood. In this work, we report on the observation and explanation of droplet ejection at the plasma–liquid interface of a one-atmosphere glow discharge with the liquid anode. The impact of droplets emission on plasma properties is also analyzed by spectroscopy. The process, which is an efficient mass and charge transport mechanism, apparently occurs during discharge operation and thus constitutes a feedback vehicle between the discharge and the liquid. Distinctive from the well-known Talyor cone droplets associated with liquid cathodes, the observed droplets originate from the bubbles due to electrolysis and solvated air which does not require strong electric field at liquid surface. Instead, the droplets are ejected by bubble cavity rupture at the plasma–liquid interface and their size, initial speed are strongly dependent on the gravity, inertia and capillarity. The droplets emerge near the plasma attachment and are subsequently vaporized, emitting intense UV and visible light, which originated from excited OH radicals and sodium derived from the liquid electrolyte. Spectroscopy analysis confirmed that the bursting droplets generally reduce the gas temperature while their effects on electron density depend on the composition of the liquid anode. Results also show that droplets from NaCl solution increase the plasma electron density due to the lower ionization potential of sodium. These findings reveal a new mechanism for discharge maintenance and mass transport as well as suggest a simple approach to dispersing plasma-activated liquid into the gas phase and thus enhancing plasma–liquid interaction. 
    more » « less
  3. Dissolved natural organic matter (DOM) is a complex matrix of organic matter that is ubiquitous in natural aquatic environments. So far, substantial research has been conducted on the DOM adsorption on Mn oxides as well as the reduction processes of Mn oxides by DOM. However, little is known about the oxidative roles of DOM in oxidizing Mn2+(aq) to Mn(III/IV) oxide solids. Sunlight-driven processes can initiate the degradation of DOM accompanied by the formation of photochemically produced reactive intermediates, including excited triplet state DOM (3DOM*), hydroxyl radical (•OH), superoxide radical (O2•−), hydrogen peroxide (H2O2), and singlet oxygen (1O2). Further, in the presence of halide ions, reactive halogen species can be generated by reactions between 3DOM* and halide ions, and by reactions between •OH and halide ions. In this study, we found that the solution pH controlled the oxidation of Mn2+(aq) to Mn oxide solids during photolysis of DOM. Among the reactive oxygen species, Mn2+(aq) was found to be oxidized to Mn oxide solids mainly by O2•−. The DOM with different quantities of aromatic functional groups affected its oxidative capability. With the addition of bromide ions (Br−), Mn2+(aq) oxidation was promoted further by formation Br radicals, which can also oxidize Mn2+(aq) to Mn oxide solids. These findings can help us better understand the oxidative role of DOM in the formation of Mn oxide solids in organic-rich surface water. In addition, this study assists in comprehending the impacts of the photolytic reactions between DOM and halide ions and their resulting reactive oxygen and halogen species on the oxidation and reduction processes of other transition metal oxides in the environment. 
    more » « less
  4. Abstract Pattern formation in plasma–solid interaction represents a great research challenge in many applications from plasma etching to surface treatment, whereby plasma attachments on electrodes (arc roots) are constricted to self-organized spots. Gliding arc discharge in a Jacob’s Ladder, exhibiting hopping dynamics, provides a unique window to probe the nature of pattern formation in plasma–surface interactions. In this work, we find that the existence of negative differential resistance (NDR) across the sheath is responsible for the observed hopping pattern. Due to NDR, the current density and potential drop behave as activator and inhibitor, the dynamic interactions of which govern the surface current density re-distribution and the formation of structured spots. In gliding arc discharges, new arc roots can form separately in front of the existing root(s), which happens periodically to constitute the stepwise hopping. From the instability phase-diagram analysis, the phenomenon that arc attachments tend to constrict itself spontaneously in the NDR regime is well explained. Furthermore, we demonstrate via a comprehensive magnetohydrodynamics (MHD) computation that the existence of a sheath NDR can successfully reproduce the arc hopping as observed in experiments. Therefore, this work uncovers the essential role of sheath NDR in the plasma–solid surface pattern formation and opens up a hitherto unexplored area of research for manipulating the plasma–solid interactions. 
    more » « less
  5. Abstract Pattern formation and self-organization in many biological and non-biological systems can be explained through Turing’s activator-inhibitor model. Here we show how this model can be employed to describe the formation of filamentary structures in a low-pressure electric discharge exposed to a strong magnetic field. Theoretical investigation reveals that the fluid equations describing a magnetized plasma can be rearranged to take the mathematical form of Turing’s activator-inhibitor model. Numerical simulations based on the equations derived from this approach could reproduce the various patterns observed in the experiments. Also, it is shown that a density imbalance between electrons and ions exists in the bulk of the magnetized plasma that generates an electric field structure transverse to the applied magnetic field. This electric field is responsible for the stability of the filamentary patterns in the magnetized plasma over time scales much longer than the characteristic time scales of the electric discharge. 
    more » « less