Bacterial biofilms are aggregates of surface-associated cells embedded in an extracellular polysaccharide (EPS) matrix, and are typically stationary. Studies of bacterial collective movement have largely focused on swarming motility mediated by flagella or pili, in the absence of a biofilm. Here, we describe a unique mode of collective movement by a self-propelled, surface-associated biofilm-like multicellular structure.
Pattern formation in plasma–solid interaction represents a great research challenge in many applications from plasma etching to surface treatment, whereby plasma attachments on electrodes (arc roots) are constricted to self-organized spots. Gliding arc discharge in a Jacob’s Ladder, exhibiting hopping dynamics, provides a unique window to probe the nature of pattern formation in plasma–surface interactions. In this work, we find that the existence of negative differential resistance (NDR) across the sheath is responsible for the observed hopping pattern. Due to NDR, the current density and potential drop behave as activator and inhibitor, the dynamic interactions of which govern the surface current density re-distribution and the formation of structured spots. In gliding arc discharges, new arc roots can form separately in front of the existing root(s), which happens periodically to constitute the stepwise hopping. From the instability phase-diagram analysis, the phenomenon that arc attachments tend to constrict itself spontaneously in the NDR regime is well explained. Furthermore, we demonstrate via a comprehensive magnetohydrodynamics (MHD) computation that the existence of a sheath NDR can successfully reproduce the arc hopping as observed in experiments. Therefore, this work uncovers the essential role of sheath NDR in the plasma–solid surface pattern formation and opens more »
- Award ID(s):
- 1650544
- Publication Date:
- NSF-PAR ID:
- 10369788
- Journal Name:
- PNAS Nexus
- Volume:
- 1
- Issue:
- 3
- ISSN:
- 2752-6542
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Flavobacterium johnsoniae cells, which move by gliding motility, self-assemble into spherical microcolonies with EPS cores when observed by an under-oil open microfluidic system. Small microcolonies merge, creating larger ones. Microscopic analysis and computer simulation indicate that microcolonies move by cells at the base of the structure, attached to the surface by one pole of the cell. Biochemical and mutant analyses show that an active process drives microcolony self-assembly and motility, which depend on the bacterial gliding apparatus. We hypothesize that this mode of collective bacterial movement on solid surfaces may play potential roles in biofilm dynamics, bacterial cargo transport, or microbial adaptation. However, whether this collective motility occurs on plant roots or soil particles, the native environment forF. johnsoniae , is unknown. -
Experiments are conducted to understand atmospheric spark ignition process in more detail. The research done relates the electrical energy dissipated across the spark gap to the measured schlieren ignition volume. The result is the supplied electrical thermal energy. The study provides insight into the structure of plasma and the mechanisms which convert electrical power into heat. The research is done to support laminar burning speed calculations to increase accuracy and extend diagnostic techniques to conditions otherwise immeasurable. Typically, plasma measurements are taken via a Langmuir probe. However, for the automotive ignition plasma, this measurement technique is challenging because of the transient nature, high pressure, and temperatures involved. Therefore, several alternative techniques will be used in order to find the potential distribution of the plasma and unveil the structure of the plasma more specifically the cathode fall. Three different voltage measurements are taken in order to capture the cathode fall of the plasma. One method simply measures the potential using a high voltage probe. This method may be inaccurate because of the presence of charged ions, however, these results are compared to non-intrusive measurements where voltage data is extrapolated over various gaps sizes to zero length. It is generally agreed thatmore »
-
Abstract This article is devoted to the memory of Yuri P Raizer, who passed away in 2021. He left a noticeable trace in gas discharge physics. The principle of minimal power (the state that requires minimal power is most probable) is thoroughly used in his books. Although the fundamental laws of physics do not imply this ad hoc principle, a detailed analysis of underlying phenomena can often reveal why nature prefers this path. Raizer illustrated this principle for plasma stratification, formation of electrode spots, discharge constriction, the shape of an arc channel, etc. We argue that the nonlinearity of equations describing gas discharges can often justify the realization of a plasma state maintained at minimal electric power. This nonlinearity appears because small groups of energetic electrons often control the ionization processes. The number of these electrons depends strongly on the ratio of the electric field to gas density, E / N . Under certain conditions, the ionization rate can also depend nonlinearly on electron density due to stepwise ionization and Coulomb collisions. We use the principle of minimal power to illustrate some of Raizer’s contributions to gas discharge physics from a single point of view. We demonstrate that nonlinearity ofmore »
-
Abstract Background Various growth systems are available for studying plant root growth and plant–microbe interactions including hydroponics and aeroponics. Although some of these systems work well with
Arabidopsis thaliana and smaller cereal model plants, they may not scale up as well for use with hundreds of plants at a time from a larger plant species. The aim of this study is to present step-by-step instructions for fabricating an aeroponic system, also called a “caisson,” that has been in use in several legume research labs studying the development of symbiotic nitrogen fixing nodules, but for which detailed directions are not currently available. The aeroponic system is reusable and is adaptable for many other types of investigations besides root nodulation.Results An aeroponic system that is affordable and reusable was adapted from a design invented by French engineer René Odorico. It consists of two main components: a modified trash can with a lid of holes and a commercially available industrial humidifier that is waterproofed with silicon sealant. The humidifier generates a mist in which plant roots grow, suspended from holes in trash can lid. Results from use of the aeroponic system have been available in the scientific community for decades; it has a record as amore »
Conclusions Aeroponic systems present a convenient way for researchers to grow plants for studying root systems and plant–microbe interactions in root systems. They are particularly attractive for phenotyping roots and following the progress of nodule development in legumes. Advantages include the ability to precisely control the growth medium in which the plants grow and easy observations of roots during growth. In this system, mechanical shear potentially killing microbes found in some other types of aeroponic devices is not an issue. Disadvantages of aeroponic systems include the likelihood of altered root physiology compared to root growth on soil and other solid substrates and the need to have separate aeroponic systems for comparing plant responses to different microbial strains.
-
Abstract Micro-scale inorganic particles (d > 1 µm) have reduced surface area and higher density, making them negatively buoyant in most dip-coating mixtures. Their controlled delivery in hard-to-reach places through entrainment is possible but challenging due to the density mismatch between them and the liquid matrix called liquid carrier system (LCS). In this work, the particle transfer mechanism from the complex density mismatching mixture was investigated. The LCS solution was prepared and optimized using a polymer binder and an evaporating solvent. The inorganic particles were dispersed in the LCS by stirring at the just suspending speed to maintain the pseudo suspension characteristics for the heterogeneous mixture. The effect of solid loading and the binder volume fraction on solid transfer has been reported at room temperature. Two coating regimes are observed (i) heterogeneous coating where particle clusters are formed at a low capillary number and (ii) effective viscous regime, where full coverage can be observed on the substrate. ‘Zero’ particle entrainment was not observed even at a low capillary number of the mixture, which can be attributed to the presence of the binder and hydrodynamic flow of the particles due to the stirring of the mixture. The critical film thickness for particle entrainment is
formore »$${h}^{*}=0.16a$$