skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


This content will become publicly available on November 1, 2025

Title: National Weather Service (NWS) Forecasters’ Perceptions of AI/ML and Its Use in Operational Forecasting
Abstract Artificial intelligence and machine learning (AI/ML) have attracted a great deal of attention from the atmospheric science community. The explosion of attention on AI/ML development carries implications for the operational community, prompting questions about how novel AI/ML advancements will translate from research into operations. However, the field lacks empirical evidence on how National Weather Service (NWS) forecasters, as key intended users, perceive AI/ML and its use in operational forecasting. This study addresses this crucial gap through structured interviews conducted with 29 NWS forecasters from October 2021 through July 2023 in which we explored their perceptions of AI/ML in forecasting. We found that forecasters generally prefer the term “machine learning” over “artificial intelligence” and that labeling a product as being AI/ML did not hurt perceptions of the products and made some forecasters more excited about the product. Forecasters also had a wide range of familiarity with AI/ML, and overall, they were (tentatively) open to the use of AI/ML in forecasting. We also provide examples of specific areas related to AI/ML that forecasters are excited or hopeful about and that they are concerned or worried about. One concern that was raised in several ways was that AI/ML could replace forecasters or remove them from the forecasting process. However, forecasters expressed a widespread and deep commitment to the best possible forecasts and services to uphold the agency mission using whatever tools or products that are available to assist them. Last, we note how forecasters’ perceptions evolved over the course of the study.  more » « less
Award ID(s):
2019758
PAR ID:
10567250
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
AMS
Date Published:
Journal Name:
Bulletin of the American Meteorological Society
Volume:
105
Issue:
11
ISSN:
0003-0007
Page Range / eLocation ID:
E2194 to E2215
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This project developed a pre-interview survey, interview protocols, and materials for conducting interviews with expert users to better understand how they assess and make use decisions about new AI/ML guidance. Weather forecasters access and synthesize myriad sources of information when forecasting for high-impact, severe weather events. In recent years, artificial intelligence (AI) techniques have increasingly been used to produce new guidance tools with the goal of aiding weather forecasting, including for severe weather. For this study, we leveraged these advances to explore how National Weather Service (NWS) forecasters perceive the use of new AI guidance for forecasting severe hail and storm mode. We also specifically examine which guidance features are important for how forecasters assess the trustworthiness of new AI guidance. To this aim, we conducted online, structured interviews with NWS forecasters from across the Eastern, Central, and Southern Regions. The interviews covered the forecasters’ approaches and challenges for forecasting severe weather, perceptions of AI and its use in forecasting, and reactions to one of two experimental (i.e., non-operational) AI severe weather guidance: probability of severe hail or probability of storm mode. During the interview, the forecasters went through a self-guided review of different sets of information about the development (spin-up information, AI model technique, training of AI model, input information) and performance (verification metrics, interactive output, output comparison to operational guidance) of the presented guidance. The forecasters then assessed how the information influenced their perception of how trustworthy the guidance was and whether or not they would consider using it for forecasting. This project includes the pre-interview survey, survey data, interview protocols, and accompanying information boards used for the interviews. There is one set of interview materials in which AI/ML are mentioned throughout and another set where AI/ML were only mentioned at the end of the interviews. We did this to better understand how the label “AI/ML” did or did not affect how interviewees responded to interview questions and reviewed the information board. We also leverage think aloud methods with the information board, the instructions for which are included in the interview protocols. 
    more » « less
  2. This project developed a pre-interview survey, interview protocols, and materials for conducting interviews with expert users to better understand how they assess and make use decisions about new AI/ML guidance. Weather forecasters access and synthesize myriad sources of information when forecasting for high-impact, severe weather events. In recent years, artificial intelligence (AI) techniques have increasingly been used to produce new guidance tools with the goal of aiding weather forecasting, including for severe weather. For this study, we leveraged these advances to explore how National Weather Service (NWS) forecasters perceive the use of new AI guidance for forecasting severe hail and storm mode. We also specifically examine which guidance features are important for how forecasters assess the trustworthiness of new AI guidance. To this aim, we conducted online, structured interviews with NWS forecasters from across the Eastern, Central, and Southern Regions. The interviews covered the forecasters’ approaches and challenges for forecasting severe weather, perceptions of AI and its use in forecasting, and reactions to one of two experimental (i.e., non-operational) AI severe weather guidance: probability of severe hail or probability of storm mode. During the interview, the forecasters went through a self-guided review of different sets of information about the development (spin-up information, AI model technique, training of AI model, input information) and performance (verification metrics, interactive output, output comparison to operational guidance) of the presented guidance. The forecasters then assessed how the information influenced their perception of how trustworthy the guidance was and whether or not they would consider using it for forecasting. This project includes the pre-interview survey, survey data, interview protocols, and accompanying information boards used for the interviews. There is one set of interview materials in which AI/ML are mentioned throughout and another set where AI/ML were only mentioned at the end of the interviews. We did this to better understand how the label “AI/ML” did or did not affect how interviewees responded to interview questions and reviewed the information board. We also leverage think aloud methods with the information board, the instructions for which are included in the interview protocols. 
    more » « less
  3. This project developed a pre-interview survey, interview protocols, and materials for conducting interviews with expert users to better understand how they assess and make use decisions about new AI/ML guidance. Weather forecasters access and synthesize myriad sources of information when forecasting for high-impact, severe weather events. In recent years, artificial intelligence (AI) techniques have increasingly been used to produce new guidance tools with the goal of aiding weather forecasting, including for severe weather. For this study, we leveraged these advances to explore how National Weather Service (NWS) forecasters perceive the use of new AI guidance for forecasting severe hail and storm mode. We also specifically examine which guidance features are important for how forecasters assess the trustworthiness of new AI guidance. To this aim, we conducted online, structured interviews with NWS forecasters from across the Eastern, Central, and Southern Regions. The interviews covered the forecasters’ approaches and challenges for forecasting severe weather, perceptions of AI and its use in forecasting, and reactions to one of two experimental (i.e., non-operational) AI severe weather guidance: probability of severe hail or probability of storm mode. During the interview, the forecasters went through a self-guided review of different sets of information about the development (spin-up information, AI model technique, training of AI model, input information) and performance (verification metrics, interactive output, output comparison to operational guidance) of the presented guidance. The forecasters then assessed how the information influenced their perception of how trustworthy the guidance was and whether or not they would consider using it for forecasting. This project includes the pre-interview survey, survey data, interview protocols, and accompanying information boards used for the interviews. There is one set of interview materials in which AI/ML are mentioned throughout and another set where AI/ML were only mentioned at the end of the interviews. We did this to better understand how the label “AI/ML” did or did not affect how interviewees responded to interview questions and reviewed the information board. We also leverage think aloud methods with the information board, the instructions for which are included in the interview protocols. 
    more » « less
  4. Abstract As an increasing number of machine learning (ML) products enter the research-to-operations (R2O) pipeline, researchers have anecdotally noted a perceived hesitancy by operational forecasters to adopt this relatively new technology. One explanation often cited in the literature is that this perceived hesitancy derives from the complex and opaque nature of ML methods. Because modern ML models are trained to solve tasks by optimizing a potentially complex combination of mathematical weights, thresholds, and nonlinear cost functions, it can be difficult to determine how these models reach a solution from their given input. However, it remains unclear to what degree a model’s transparency may influence a forecaster’s decision to use that model or if that impact differs between ML and more traditional (i.e., non-ML) methods. To address this question, a survey was offered to forecaster and researcher participants attending the 2021 NOAA Hazardous Weather Testbed (HWT) Spring Forecasting Experiment (SFE) with questions about how participants subjectively perceive and compare machine learning products to more traditionally derived products. Results from this study revealed few differences in how participants evaluated machine learning products compared to other types of guidance. However, comparing the responses between operational forecasters, researchers, and academics exposed notable differences in what factors the three groups considered to be most important for determining the operational success of a new forecast product. These results support the need for increased collaboration between the operational and research communities. Significance StatementParticipants of the 2021 Hazardous Weather Testbed Spring Forecasting Experiment were surveyed to assess how machine learning products are perceived and evaluated in operational settings. The results revealed little difference in how machine learning products are evaluated compared to more traditional methods but emphasized the need for explainable product behavior and comprehensive end-user training. 
    more » « less
  5. Abstract As artificial intelligence (AI) methods are increasingly used to develop new guidance intended for operational use by forecasters, it is critical to evaluate whether forecasters deem the guidance trustworthy. Past trust-related AI research suggests that certain attributes (e.g., understanding how the AI was trained, interactivity, and performance) contribute to users perceiving the AI as trustworthy. However, little research has been done to examine the role of these and other attributes for weather forecasters. In this study, we conducted 16 online interviews with National Weather Service (NWS) forecasters to examine (i) how they make guidance use decisions and (ii) how the AI model technique used, training, input variables, performance, and developers as well as interacting with the model output influenced their assessments of trustworthiness of new guidance. The interviews pertained to either a random forest model predicting the probability of severe hail or a 2D convolutional neural network model predicting the probability of storm mode. When taken as a whole, our findings illustrate how forecasters’ assessment of AI guidance trustworthiness is a process that occurs over time rather than automatically or at first introduction. We recommend developers center end users when creating new AI guidance tools, making end users integral to their thinking and efforts. This approach is essential for the development of useful andusedtools. The details of these findings can help AI developers understand how forecasters perceive AI guidance and inform AI development and refinement efforts. Significance StatementWe used a mixed-methods quantitative and qualitative approach to understand how National Weather Service (NWS) forecasters 1) make guidance use decisions within their operational forecasting process and 2) assess the trustworthiness of prototype guidance developed using artificial intelligence (AI). When taken as a whole, our findings illustrate that forecasters’ assessment of AI guidance trustworthiness is a process that occurs over time rather than automatically and suggest that developers must center the end user when creating new AI guidance tools to ensure that the developed tools are useful andused. 
    more » « less