The largest animals are marine filter feeders, but the underlying mechanism of their large size remains unexplained. We measured feeding performance and prey quality to demonstrate how whale gigantism is driven by the interplay of prey abundance and harvesting mechanisms that increase prey capture rates and energy intake. The foraging efficiency of toothed whales that feed on single prey is constrained by the abundance of large prey, whereas filter-feeding baleen whales seasonally exploit vast swarms of small prey at high efficiencies. Given temporally and spatially aggregated prey, filter feeding provides an evolutionary pathway to extremes in body size that are not available to lineages that must feed on one prey at a time. Maximum size in filter feeders is likely constrained by prey availability across space and time.
more »
« less
Suction Feeding by Small Organisms: Performance Limits in Larval Vertebrates and Carnivorous Plants
Abstract Suction feeding has evolved independently in two highly disparate animal and plant systems, aquatic vertebrates and carnivorous bladderworts. We review the suction performance of animal and plant suction feeders to explore biomechanical performance limits for aquatic feeders based on morphology and kinematics, in the context of current knowledge of suction feeding. While vertebrates have the greatest diversity and size range of suction feeders, bladderworts are the smallest and fastest known suction feeders. Body size has profound effects on aquatic organismal function, including suction feeding, particularly in the intermediate flow regime that tiny organisms can experience. A minority of tiny organisms suction feed, consistent with model predictions that generating effective suction flow is less energetically efficient and also requires more flow-rate specific power at small size. Although the speed of suction flows generally increases with body and gape size, some specialized tiny plant and animal predators generate suction flows greater than those of suction feeders 100 times larger. Bladderworts generate rapid flow via high-energy and high-power elastic recoil and suction feed for nutrients (relying on photosynthesis for energy). Small animals may be limited by available muscle energy and power, although mouth protrusion can offset the performance cost of not generating high suction pressure. We hypothesize that both the high energetic costs and high power requirements of generating rapid suction flow shape the biomechanics of small suction feeders, and that plants and animals have arrived at different solutions due in part to their different energy budgets.
more »
« less
- Award ID(s):
- 1930744
- PAR ID:
- 10206552
- Date Published:
- Journal Name:
- Integrative and Comparative Biology
- Volume:
- 60
- Issue:
- 4
- ISSN:
- 1540-7063
- Page Range / eLocation ID:
- 852 to 863
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The largest animals are baleen filter feeders that exploit large aggregations of small-bodied plankton. Although this feeding mechanism has evolved multiple times in marine vertebrates, rorqual whales exhibit a distinct lunge filter feeding mode that requires extreme physiological adaptations—most of which remain poorly understood. Here, we review the biomechanics of the lunge feeding mechanism in rorqual whales that underlies their extraordinary foraging performance and gigantic body size.more » « less
-
Microscopic sessile suspension feeders live attached to surfaces and, by consuming bacteria-sized prey and by being consumed, they form an important part of aquatic ecosystems. Their environmental impact is mediated by their feeding rate, which depends on a self-generated feeding current. The feeding rate has been hypothesized to be limited by recirculating eddies that cause the organisms to feed from water that is depleted of food particles. However, those results considered organisms in still water, while ambient flow is often present in their natural habitats. We show, using a point-force model, that even very slow ambient flow, with speed several orders of magnitude less than that of the self-generated feeding current, is sufficient to disrupt the eddies around perpendicular suspension feeders, providing a constant supply of food-rich water. However, the feeding rate decreases in external flow at a range of non-perpendicular orientations due to the formation of recirculation structures not seen in still water. We quantify the feeding flow and observe such recirculation experimentally for the suspension feeder Vorticella convallaria in external flows typical of streams and rivers.more » « less
-
null (Ed.)Microscopic sessile suspension feeders live attached to surfaces and, by consuming bacteria-sized prey and by being consumed, they form an important part of aquatic ecosystems. Their environmental impact is mediated by their feeding rate, which depends on a self-generated feeding current. The feeding rate has been hypothesized to be limited by recirculating eddies that cause the organisms to feed from water that is depleted of food particles. However, those results considered organisms in still water, while ambient flow is often present in their natural habitats. We show, using a point-force model, that even very slow ambient flow, with speed several orders of magnitude less than that of the self-generated feeding current, is sufficient to disrupt the eddies around perpendicular suspension feeders, providing a constant supply of food-rich water. However, the feeding rate decreases in external flow at a range of non-perpendicular orientations due to the formation of recirculation structures not seen in still water. We quantify the feeding flow and observe such recirculation experimentally for the suspension feeder Vorticella convallaria in external flows typical of streams and rivers.more » « less
-
Vorticella convallaria are microscopic sessile suspension feeders that live attached to substrates in aquatic environments. They feed using a self‐generated current and help maintain the health of aquatic ecosystems and wastewater treatment facilities by consuming bacteria and detritus. Their environmental impact is mediated by their feeding rate. In ambient flow, feeding rates are highly dependent on an individual's orientation relative to the substrate and the flow. Here, we investigate how this orientation is impacted by flow speed. Furthermore, we examined whether individuals actively avoid orientations unfavorable for feeding. We exposed individuals to unidirectional laminar flow at shear rates of 0, 0.5, 1.0, and 1.5 s−1, and recorded their 3D orientation using a custom biplanar microscope. We determined that V. convallaria orientation became progressively tilted downstream as the shear rate increased, but individuals were still able to actively reorient. Additionally, at higher shear rates, individuals spent a larger fraction of their time in orientations with reduced feeding rates. Our shear rates correspond to freestream flows on the scale of mm s−1 to cm s−1 in natural environments.more » « less
An official website of the United States government

