skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Abrupt transformation of West Greenland lakes following compound climate extremes associated with atmospheric rivers
Arctic ecosystems are affected by accelerated warming as well as the intensification of the hydrologic cycle, yet understanding of the impacts of compound climate extremes (e.g., simultaneous extreme heat and rainfall) remains limited, despite their high potential to alter ecosystems. Here, we show that the aquatic ecosystems in historically arid West Greenland have undergone an ecological transformation after a series of atmospheric rivers that simultaneously produced record heat and rainfall hit the region in autumn 2022. We analyzed a unique, long-term lake dataset and found that compound climate extremes pushed Arctic lakes across a tipping point. As terrestrial–aquatic linkages were strengthened, lakes synchronously transformed from “blue” lakes with high transparency and low pelagic primary production to “brown” in less than a year, owing to a large influx of dissolved organic material and metals, with iron concentrations increasing by more than two orders of magnitude. The browning of lake waters reduced light penetration by 50% across lakes. The resulting light limitation altered plankton distributions and community structure, including a major reduction in prokaryotic diversity and an increase in algal groups capable of metabolizing organic carbon sources. As a result, lakes shifted from being summer carbon sinks to sources, with a >350% increase in carbon dioxide flux from lakes to the atmosphere. The remarkably rapid, coherent transformation of these Arctic ecosystems underscores the synergistic and unpredictable impacts of compound extreme events and the importance of their seasonal timing, especially in regions with negative moisture balance.  more » « less
Award ID(s):
2348144 2021713
PAR ID:
10567396
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
122
Issue:
4
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Multiple aquatic ecosystems (pond, lake, river, lagoon, and ocean) on the Arctic Coastal Plain near Utqiaġvik, Alaska, USA, were visited to determine their relative atmospheric CO2flux and how this may have changed over time. The nearshore coastal waters and large freshwater lakes were small sources of atmospheric CO2, whereas smaller waterbodies were substantial sources.pCO2was linked to dissolved organic carbon concentrations across broad spatial and temporal scales, with greater concentrations found in smaller freshwater systems (i.e., ponds and rivers). On a day‐to‐day basis, water temperatures appeared to be the strongest driver ofpCO2levels in tundra ponds, where warmer temperatures likely stimulated microbial mineralization of carbon in both aquatic and hydrologically linked terrestrial environments. Large rainfall events, which may lead to inflow of carbon‐rich groundwater into these ponds, also were associated with increased daily averagepCO2. Based on comparison to historical data, we estimate that CO2concentrations in tundra ponds have increased more than 1.8 times over the past 40 years. Quantifying CO2flux from these abundant aquatic ecosystems on the Arctic Coastal Plain and elsewhere in the high northern latitudes will likely have important implications for furthering understanding of landscape‐level and nearshore carbon dynamics in the Arctic. 
    more » « less
  2. Abstract Lake surface temperature extremes have shifted over recent decades, leading to significant ecological and economic impacts. Here, we employed a hydrodynamic-ice model, driven by climate data, to reconstruct over 80 years of lake surface temperature data across the world’s largest freshwater bodies. We analyzed lake surface temperature extremes by examining changes in the 10th and 90th percentiles of the detrended lake surface temperature distribution, alongside heatwaves and cold-spells. Our findings reveal a 20–60% increase in the 10 and 90 percentiles detrended lake surface temperature in the last 50 years relative to the first 30 years. Heatwave and cold-spell intensities, measured via annual degree days, showed strong coherence with the Arctic Oscillation (period: 2.5 years), Southern Oscillation Index (4 years), and Pacific Decadal Oscillation (6.5 years), indicating significant links between lake surface temperature extremes and both interannual and decadal climate teleconnections. Notably, heatwave and cold-spell intensities for all lakes surged by over 100% after 1996 or 1976, aligning with the strongest El-Niño and a major shift in the Pacific Decadal Oscillation, respectively, marking potential regional climate tipping points. This emphasizes the long-lasting impacts of climate change on large lake thermodynamics, which cascade through larger ecological and regional climate systems. 
    more » « less
  3. Abstract The impact of extreme heat on crop yields is an increasingly pressing issue given anthropogenic climate warming. However, some of the physical mechanisms involved in these impacts remain unclear, impeding adaptation-relevant insight and reliable projections of future climate impacts on crops. Here, using a multiple regression model based on observational data, we show that while extreme dry heat steeply reduced U.S. corn and soy yields, humid heat extremes had insignificant impacts and even boosted yields in some areas, despite having comparably high dry-bulb temperatures as their dry heat counterparts. This result suggests that conflating dry and humid heat extremes may lead to underestimated crop yield sensitivities to extreme dry heat. Rainfall tends to precede humid but not dry heat extremes, suggesting that multivariate weather sequences play a role in these crop responses. Our results provide evidence that extreme heat in recent years primarily affected yields by inducing moisture stress, and that the conflation of humid and dry heat extremes may lead to inaccuracy in projecting crop yield responses to warming and changing humidity. 
    more » « less
  4. The rapid climate warming is affecting the Arctic which is rich in aquatic systems. As a result of permafrost thaw, thermokarst lakes and ponds are either shrinking due to lake drainage or expanding due to lake shore erosion. This process in turn mobilizes organic carbon, which is released by permafrost deposits and active layer material that slips into the lake. In this study, we combine hydrochemical measurements and remote sensing data to analyze the influence of lake change processes, especially lake growth, on lake hydrochemical parameters such as DOC, EC, pH as well as stable oxygen and hydrogen isotopes in the Arctic Coastal Plain. For our entire dataset of 97 water samples from 82 water bodies, we found significantly higher CH4 concentrations in lakes with a floating-ice regime and significantly higher DOC concentrations in lakes with a bedfast-ice regime. We show significantly lower CH4 concentrations in lagoons compared to lakes as a result of an effective CH4 oxidation that increased with a seawater connection. For our detailed lake sampling of two thermokarst lakes, we found a significant positive correlation for lake shore erosion and DOC for one of the lakes. Our detailed lake sampling approach indicates that the generally shallow thermokarst lakes are overall well mixed and that single hydrochemical samples are representative for the entire lake. Finally, our study confirms that DOC concentrations correlates with lake size, ecoregion type and underlying deposits. 
    more » « less
  5. ABSTRACT China's pursuit of carbon neutrality targets hinges on a profound shift towards low-carbon energy, primarily reliant on intermittent and variable, yet crucial, solar and wind power sources. In particular, low-solar-low-wind (LSLW) compound extremes present a critical yet largely ignored threat to the reliability of renewable electricity generation. While existing studies have largely evaluated the impacts of average climate-induced changes in renewable energy resources, comprehensive analyses of the compound extremes and, particularly, the underpinning dynamic mechanisms remain scarce. Here we show the dynamic evolution of compound LSLW extremes and their underlying mechanisms across China via coupling multi-model simulations with diagnostic analysis. Our results unveil a strong topographic dependence in the frequency of compound LSLW extremes, with a national average frequency of 16.4 (10th–90th percentile interval ranges from 5.3 to 32.6) days/yr, when renewable energy resources in eastern China are particularly compromised (∼80% lower than that under an average climate). We reveal a striking increase in the frequency of LSLW extremes, ranging from 12.4% under SSP126 to 60.2% under SSP370, primarily driven by both renewable energy resource declines and increasingly heavily-tailed distributions, resulting from weakened meridional temperature (pressure) gradient, increased frequency of extremely dense cloud cover and additional distinctive influence of increased aerosols under SSP370. Our study underscores the urgency of preparing for significantly heightened occurrences of LSLW events in a warmer future, emphasizing that such climate-induced compound LSLW extreme changes are not simply by chance, but rather projectable, thereby underscoring the need for proactive adaptation strategies. Such insights are crucial for countries navigating a similar transition towards renewable energy. 
    more » « less