skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Mark–recapture surveys affect nest site fidelity but not reproductive timing of male Smallmouth Bass
Abstract

Objective

Fish population surveys in north-temperate lakes are often conducted in the fall or spring when individuals are easy to capture with traditional fisheries techniques. Because some fishes are preparing to spawn or are spawning during these seasons, there is a critical need to better understand the potential influences of these surveys on decisions that are related to fish reproduction.

Methods

We tested whether spring mark–recapture surveys using fyke nets followed by electrofishing affect the reproductive behaviors of male Smallmouth Bass Micropterus dolomieu in a northern Wisconsin lake. Fyke netting, electrofishing, and whole-lake nest snorkeling surveys were conducted during 2001–2008, and Floy-tagged males were tracked across years to test whether capture in the fyke nets only or capture in the electrofishing survey influenced interyear nest site fidelity and reproductive timing.

Result

The mark–recapture surveys were conducted preceding the spawning of Smallmouth Bass, and returning males that were caught in the electrofishing survey nested ~50 m farther from their prior year's nest than both males that were captured only in fyke nets and males that were captured by neither method. Average interyear nest distances were ~200 m, and median interyear nest distances were ~90 m for males that were not captured in the electrofishing survey. Electrofishing and fyke netting did not influence the timing of reproduction.

Conclusion

Spring electrofishing surveys for Smallmouth Bass have the potential to displace breeding males from preferred nesting habitats. If displacement negatively influences fitness (i.e., age-0 survivorship to maturation), spring electrofishing surveys would not be recommended for assessing Smallmouth Bass populations. However, spring population surveys often occur soon after ice off, and surveys that are conducted at these colder temperatures are typically less stressful and less likely to result in mortality. Future research should test for fitness implications of reduced nest site fidelity following electrofishing in Smallmouth Bass while considering potential fitness trade-offs if surveys are moved later in the year.

 
more » « less
Award ID(s):
1755387
PAR ID:
10567553
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
North American Journal of Fisheries Management
Volume:
44
Issue:
1
ISSN:
0275-5947
Format(s):
Medium: X Size: p. 132-144
Size(s):
p. 132-144
Sponsoring Org:
National Science Foundation
More Like this
  1. Data are collected annually to enable us to track the fish assemblages of eleven primary lakes (Allequash, Big Muskellunge, Crystal, Sparkling, Trout, bog lakes 27-02 [Crystal Bog] and 12-15 [Trout Bog], Mendota, Monona, Wingra and Fish). Sampling on Lakes Monona, Wingra, and Fish started in 1995; sampling on other lakes started in 1981. Sampling is done at six littoral zone sites per lake with seine, minnow or crayfish traps, and fyke nets; a boat-mounted electrofishing system samples four littoral transects. Vertically hung gill nets are used to obtain two pelagic samples per lake from the deepest point. A trammel net samples across the thermocline at two sites per lake. In the bog lakes only fyke nets and minnow traps are deployed. Parameters measured include species-level identification and lengths for all fish caught, and weight and scale samples from a subset. Dominant species vary from lake to lake. Perch, rockbass, and bluegill are common, with walleye, large and smallmouth bass, northern pike and muskellunge as major piscivores. Cisco have been present in the pelagic waters of four lakes, and an exotic species, rainbow smelt, is present in two. The bog lakes contain mudminnows. Beach seining was discontinued after the 2019 season. The only sampling done in 2020 were a single gill-netting replicate in Sparkling, Crystal, and Trout lakes. Sampling in Fish Lake was missed in 2021 due to significant lake level changes. Data from the two bogs is missing in 2022. Sampling Frequency: annually Number of sites: 11. 
    more » « less
  2. Abstract

    Biodiversity surveys may require the use of multiple types of sampling gear to maximize the efficiency of species detections, yet few studies have investigated how to optimally distribute effort among gear. In this study, we conducted eDNA metabarcoding and capture‐based sampling surveys (electrofishing, fyke netting, gillnetting, and seining) to sample fish species richness in a large northern temperate lake. We evaluated the success of the sampling methods individually and in combination to determine the allocation of effort and cost across sampling gear that provides the optimal approach for lake‐wide species inventories. We found that eDNA metabarcoding detected more species than any other sampling method, including 11 species that were not detected with any capture‐based approach. Optimal gear combination analyses revealed that detected species richness is maximized when most of the effort or budget is allocated to eDNA metabarcoding, with smaller allocations to seining and fyke netting. eDNA metabarcoding and capture sampling gear showed similar patterns of spatial heterogeneity in the fish community across habitat types, with pelagic samples forming a group that was distinct from nearshore samples. Our results indicate that eDNA metabarcoding is a rapid and cost‐efficient tool for biodiversity monitoring and that assessing the complementarity of multiple sampling types can inform the development of optimal approaches for measuring fish species richness.

     
    more » « less
  3. Abstract

    In aquatic systems, refuge habitats increase resistance to drying events and maintain populations in disturbed environments. However, reduced water availability and altered flow regimes threaten the function of these habitats. We conducted a capture–mark–recapture study, integrating angler citizen science. Our objectives were to quantify variation in survival of Florida Largemouth BassMicropterus salmoides floridanusin a coastal refuge habitat across seasonal hydrological periods and over 4 years of varying drying severity and to determine the contribution of angler sampling to improving capture probabilities. Apparent survival of Florida Largemouth Bass in the coastal Everglades was highest in wet and drying periods and lowest in dry and reflooding periods. Interannual survival was closely tied to the length of upstream marsh drying, with the lowest observed survival (0.21) during a drought year. The inclusion of angler sampling improved recapture probabilities, suggesting that angler data can supplement standardized electrofishing sampling. Findings show that during short drying events Florida Largemouth Bass survival can be relatively high, with implications for Everglades restoration. Understanding the ability of refuge habitats to buffer populations from drying disturbance is a key component for conservation and restoration, particularly under climate change scenarios.

     
    more » « less
  4. The phenology of critical biological events in aquatic ecosystems are rapidly shifting due to climate change. Growing variability in phenological cues can increase the likelihood of trophic mismatches, causing recruitment failures in commercially, culturally, and recreationally important fisheries. We tested for changes in spawning phenology of regionally important walleye (Sander vitreus) populations in 194 Midwest US lakes in Minnesota, Michigan, and Wisconsin spanning 1939-2019 to investigate factors influencing walleye phenological responses to climate change and associated climate variability, including ice-off timing, lake physical characteristics, and population stocking history. Data from Wisconsin and Michigan lakes (185 and 5 out of 194 total lakes, respectively) were collected by the Wisconsin Department of Natural Resources (WDNR) and the Great Lakes Indian Fish and Wildlife Commission (GLIFWC) through standardized spring walleye mark-recapture surveys and spring tribal harvest season records. Standardized spring mark-recapture population estimates are performed shortly after ice-off, where following a marking event, a subsequent recapture sampling event is conducted using nighttime electrofishing (typically AC – WDNR, pulsed-DC – GLIFWC) of the entire shoreline including islands for small lakes and index stations for large lakes (Hansen et al. 2015) that is timed to coincide with peak walleye spawning activity (G. Hatzenbeler, WDNR, personal communication; M. Luehring, GLIFWC, personal communication; Beard et al. 1997). Data for four additional Minnesota lakes were collected by the Minnesota Department of Natural Resources (MNDNR) beginning in 1939 during annual collections of walleye eggs and broodstock (Schneider et al. 2010), where date of peak egg take was used to index peak spawning activity. For lakes where spawning location did not match the lake for which the ice-off data was collected, the spawning location either flowed into (Pike River) or was within 50 km of a lake where ice-off data were available (Pine River) and these ice-off data were used. Following the affirmation of off-reservation Ojibwe tribal fishing rights in the Ceded Territories of Wisconsin and the Upper Peninsula of Michigan in 1987, tribal spearfishers have targeted walleye during spring spawning (Mrnak et al. 2018). Nightly harvests are recorded as part of a compulsory creel survey (US Department of the Interior 1991). Using these records, we calculated the date of peak spawning activity in a given lake-year as the day of maximum tribal harvest. Although we were unable to account for varying effort in these data, a preliminary analysis comparing spawning dates estimated using tribal harvest to those determined from standardized agency surveys in the same lake and year showed that they were highly correlated (Pearson’s correlation: r = 0.91, P < 0.001). For lakes that had walleye spawning data from both agency surveys and tribal harvest, we used the data source with the greatest number of observation years. Ice-off phenology data was collected from two sources – either observed from the Global Lake and River Ice Phenology database (Benson et al. 2000)t, or modeled from a USGS region-wide machine-learning model which used North American Land Data Assimilation System (NLDAS) meteorological inputs combined with lake characteristics (lake position, clarity, size, depth, hypsography, etc.) to predict daily water column temperatures from 1979 - 2022, from which ice-off dates could be derived (https://www.sciencebase.gov/catalog/item/6206d3c2d34ec05caca53071; see Corson-Dosch et al. 2023 for details). Modeled data for our study lakes (see (Read et al. 2021) for modeling details), which performed well in reflecting ice phenology when compared to observed data (i.e., highly significant correlation between observed and modeled ice-off dates when both were available; r = 0.71, p < 0.001). Lake surface area (ha), latitude, and maximum depth (m) were acquired from agency databases and lake reports. Lake class was based on a WDNR lakes classification system (Rypel et al. 2019) that categorized lakes based on temperature, water clarity, depth, and fish community. Walleye stocking history was defined using the walleye stocking classification system developed by the Wisconsin Technical Working Group (see also Sass et al. 2021), which categorized lakes based on relative contributions of naturally-produced and stocked fish to adult recruitment by relying heavily on historic records of age-0 and age-1 catch rates and stocking histories. Wisconsin lakes were divided into three groups: natural recruitment (NR), a combination of stocking and natural recruitment (C-ST), and stocked only (ST). Walleye natural recruitment was indexed as age-0 walleye CPE (number of age-0 walleye captured per km of shoreline electrofished) from WDNR and GLIFWC fall electrofishing surveys (see Hansen et al. 2015 for details). We excluded lake-years where stocking of age-0 fish occurred before age-0 surveys to only include measurements of naturally-reproduced fish. 
    more » « less
  5. Abstract Background Anadromous rainbow smelt ( Osmerus mordax ) have experienced a large range reduction in recent decades and the status of remnant spawning populations is poorly known in Maine, where these fish have significant ecological, cultural, and commercial relevance. Defining the remnant range of anadromous smelt is more difficult than for many declining fish species because adults are only ephemerally present while spawning in small coastal streams at night during spring runoff periods when traditional assessments can be unreliable or even hazardous. We hypothesized that eDNA might facilitate improved survey efforts to define smelt spawning habitat, but that detection could also face challenges from adult eDNA quickly flushing out of these small stream systems. We combined daytime eDNA sampling with nighttime fyke netting to ascertain a potential window of eDNA detection before conducting eDNA surveys in four streams of varying abundance. Hierarchical occupancy modeling was in turn employed to estimate eDNA encounter probabilities relative to numbers of sampling events (date), samples within events, and qPCR replicates within samples. Results Results from the combined eDNA and fyke net study indicated eDNA was detectable over an extended period, culminating approximately 8–13 days following peak spawning, suggesting developing smelt larvae might be the primary source of eDNA. Subsequently, smelt eDNA was readily detected in eDNA surveys of four streams, particularly following remediation of PCR inhibitors. Hierarchical occupancy modeling confirmed our surveys had high empirical detection for most sites, and that future surveys employing at least three sampling events, three samples per event, and six qPCR replicates can afford greater than 90% combined detection capability in low abundance systems. Conclusions These results demonstrate that relatively modest eDNA sampling effort has high capacity to detect this ephemerally present species of concern at low to moderate abundances. As such, smelt eDNA detection could improve range mapping by providing longer survey windows, safer sampling conditions, and lower field effort in low density systems, than afforded by existing visual and netting approaches. 
    more » « less