skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Design Rules for 3D Printing‐Assisted Pressure Sensor Manufacturing: Achieving Broad Pressure Range Linearity
Abstract Recent advancements in 3D printing technology have expanded its application to manufacturing pressure sensors. By harnessing the cost‐effectiveness, streamlined processes, and design flexibility of 3D printing, sensor fabrication can be customized to meet specific performance needs. Thus far, 3D printing in pressure sensor development has been primarily limited to creating molds for transferring patterns onto flexible substrates, restricting both material selection and sensor performance. To fully unlock the potential of 3D printing in advanced pressure sensor fabrication, it is crucial to establish effective design rules focused on enhancing the figure of merit performance. This study introduces a universal design strategy aimed at maintaining high sensitivity across a wide pressure range—a challenging feat, as sensitivity significantly decreases at higher pressures. Our approach centers on engineering the deformability of 3D‐printed structures, achieving a linear increase in contact area between sensor patterns and electrodes without reaching saturation. Sensors designed with high elongation and low stiffness exhibit consistent sensitivity of 162.5 kPa⁻¹ across a broad pressure range (0.05–300 kPa). Mechanistic investigations through finite element analysis confirm that engineered deformability is key to achieving this enhanced linear response, offering robust sensing capabilities for demanding applications such as deep‐sea and space exploration.  more » « less
Award ID(s):
2207302
PAR ID:
10567568
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
35
Issue:
4
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Despite the extensive developments of flexible capacitive pressure sensors, it is still elusive to simultaneously achieve excellent linearity over a broad pressure range, high sensitivity, and ultrahigh pressure resolution under large pressure preloads. Here, we present a programmable fabrication method for microstructures to integrate an ultrathin ionic layer. The resulting optimized sensor exhibits a sensitivity of 33.7 kPa −1 over a linear range of 1700 kPa, a detection limit of 0.36 Pa, and a pressure resolution of 0.00725% under the pressure of 2000 kPa. Taken together with rapid response/recovery and excellent repeatability, the sensor is applied to subtle pulse detection, interactive robotic hand, and ultrahigh-resolution smart weight scale/chair. The proposed fabrication approaches and design toolkit from this work can also be leveraged to easily tune the pressure sensor performance for varying target applications and open up opportunities to create other iontronic sensors. 
    more » « less
  2. Sensitive and flexible pressure sensors have invoked considerable interest for a broad range of applications in tactile sensing, physiological sensing, and flexible electronics. The barrier between high sensitivity and low fabrication cost needs to be addressed to commercialize such flexible pressure sensors. A low-cost sacrificial template-assisted method for the capacitive sensor has been reported herein, utilizing a porous Polydimethylsiloxane (PDMS) polymer and a multiwalled carbon nanotube (MWCNT) composite-based dielectric layer. The sensor shows high sensitivity of 2.42 kPa−1 along with a low limit of detection of 1.46 Pa. The high sensitivity originates from adding MWCNT to PDMS, increasing the composite polymer’s dielectric constant. Besides this, the pressure sensor shows excellent stability at a cyclic loading of 9000 cycles, proving its reliability for long-lasting application in tactile and physiological sensing. The high sensitivity of the sensor is suitable for the detection of small deformations such as pulse waveforms as well as tactile pressure sensing. In addition, the paper demonstrates a simultaneous contact and non-contact sensing capability suitable for dual sensing (pressure and proximity) with a single data readout system. The dual-mode sensing capability may open opportunities for realizing compact systems in robotics, gesture control, contactless applications, and many more. The practicality of the sensor was shown in applications such as tactile sensing, Morse code generator, proximity sensing, and pulse wave sensing. 
    more » « less
  3. Abstract With the recent development of wearable electronics and smart textiles, flexible sensor technology is gaining increasing attention. Compared to flexible film‐based sensors, multimaterial fiber‐based technology offers unique advantages due to the breathability, durability, wear resistance, and stretchability in fabric structures. Despite the significant progress made in the fabrication and application of fiber‐based sensors, none of the existing fiber technologies allow for fully distributed pressure or temperature sensing. Herein, the design and fabrication of thermally drawn multi‐material fibers that offer distributed temperature and pressure measurement capability is reported. Thermoplastic materials, thermoplastic elastomers, and metal electrodes are successfully co‐drawn in one fiber. The embedded electrodes inside the fibers form a parallel wire transmission line, and the local characteristic impedance is designed to change with the temperature or pressure. The electrical frequency domain reflectometry is used to interrogate the impedance change along the fiber and provides information with high spatial resolution. The two types of fibers reported in this manuscript have a pressure sensitivity of 4 kPa and a temperature sensitivity of 2 °C, respectively. This work can pave the road for development of functional fibers and textiles for pressure and temperature mapping. 
    more » « less
  4. Abstract Microfluidic‐based wearable electrochemical sensors represent a transformative approach to non‐invasive, real‐time health monitoring through continuous biochemical analysis of body fluids such as sweat, saliva, and interstitial fluid. These systems offer significant potential for personalized healthcare and disease management by enabling real‐time detection of key biomarkers. However, challenges remain in optimizing microfluidic channel design, ensuring consistent biofluid collection, balancing high‐resolution fabrication with scalability, integrating flexible biocompatible materials, and establishing standardized validation protocols. This review explores advancements in microfluidic design, fabrication techniques, and integrated electrochemical sensors that have improved sensitivity, selectivity, and durability. Conventional photolithography, 3D printing, and laser‐based fabrication methods are compared, highlighting their mechanisms, advantages, and trade‐offs in microfluidic channel production. The application section summarizes strategies to overcome variability in biofluid composition, sensor drift, and user adaptability through innovative solutions such as hybrid material integration, self‐powered systems, and AI‐assisted data analysis. By analyzing recent breakthroughs, this paper outlines critical pathways for expanding wearable sensor technologies and achieving seamless operation in diverse real‐world settings, paving the way for a new era of digital health. 
    more » « less
  5. In this paper, we report the development of tailored 3D-structured (engineered) polymer-metal interfaces to create enhanced ‘engineered ionic polymer metal composite’ (eIPMC) sensors towards soft, self-powered, high sensitivity strain sensor applications. We introduce a novel advanced additive manufacturing approach to tailor the morphology of the polymer-electrode interfaces via inkjet-printed polymer microscale features. We hypothesize that these features can promote inhomogeneous strain within the material upon the application of external pressure, responsible for improved compression sensing performance. We formalize a minimal physics-based chemoelectromechanical model to predict the linear sensor behavior of eIPMCs in both open-circuit and short-circuit sensing conditions. The model accounts for polymer-electrode interfacial topography to define the inhomogeneous mechanical response driving electrochemical transport in the eIPMC. Electrochemical experiments demonstrate improved electrochemical properties of the inkjet-printed eIPMCs as compared to the standard IPMC sensors fabricated from Nafion polymer sheets. Similarly, compression sensing results show a significant increase in sensing performance of inkjet-printed eIPMC. We also introduce two alternative methods of eIPMC fabrication for sub-millimeter features, namely filament-based fused-deposition manufacturing and stencil printing, and experimentally demonstrate their improved sensing performance. Our results demonstrate increasing voltage output associated to increasing applied mechanical pressure and enhanced performance of the proposed eIPMC sensors against traditional IPMC based compression sensors. 
    more » « less