skip to main content


This content will become publicly available on December 1, 2024

Title: Iontronic pressure sensor with high sensitivity over ultra-broad linear range enabled by laser-induced gradient micro-pyramids
Abstract Despite the extensive developments of flexible capacitive pressure sensors, it is still elusive to simultaneously achieve excellent linearity over a broad pressure range, high sensitivity, and ultrahigh pressure resolution under large pressure preloads. Here, we present a programmable fabrication method for microstructures to integrate an ultrathin ionic layer. The resulting optimized sensor exhibits a sensitivity of 33.7 kPa −1 over a linear range of 1700 kPa, a detection limit of 0.36 Pa, and a pressure resolution of 0.00725% under the pressure of 2000 kPa. Taken together with rapid response/recovery and excellent repeatability, the sensor is applied to subtle pulse detection, interactive robotic hand, and ultrahigh-resolution smart weight scale/chair. The proposed fabrication approaches and design toolkit from this work can also be leveraged to easily tune the pressure sensor performance for varying target applications and open up opportunities to create other iontronic sensors.  more » « less
Award ID(s):
1933072
NSF-PAR ID:
10433241
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sensitive and flexible pressure sensors have invoked considerable interest for a broad range of applications in tactile sensing, physiological sensing, and flexible electronics. The barrier between high sensitivity and low fabrication cost needs to be addressed to commercialize such flexible pressure sensors. A low-cost sacrificial template-assisted method for the capacitive sensor has been reported herein, utilizing a porous Polydimethylsiloxane (PDMS) polymer and a multiwalled carbon nanotube (MWCNT) composite-based dielectric layer. The sensor shows high sensitivity of 2.42 kPa−1 along with a low limit of detection of 1.46 Pa. The high sensitivity originates from adding MWCNT to PDMS, increasing the composite polymer’s dielectric constant. Besides this, the pressure sensor shows excellent stability at a cyclic loading of 9000 cycles, proving its reliability for long-lasting application in tactile and physiological sensing. The high sensitivity of the sensor is suitable for the detection of small deformations such as pulse waveforms as well as tactile pressure sensing. In addition, the paper demonstrates a simultaneous contact and non-contact sensing capability suitable for dual sensing (pressure and proximity) with a single data readout system. The dual-mode sensing capability may open opportunities for realizing compact systems in robotics, gesture control, contactless applications, and many more. The practicality of the sensor was shown in applications such as tactile sensing, Morse code generator, proximity sensing, and pulse wave sensing. 
    more » « less
  2. Abstract

    Flexible pressure sensors with high sensitivity, broad working range, and good scalability are highly desired for the next generation of wearable electronic devices. However, manufacturing of such pressure sensors still remains challenging. A large‐area compliant and cost‐effective process to fabricate high‐performance pressure sensors via a combination of mesh‐molded periodic microstructures and printed side‐by‐side electrodes is presented. The sensors exhibit low operating voltage (1 V), high sensitivity (20.9 kPa−1), low detection limit (7.4 Pa), fast response/recovery time (23/18 ms), and excellent reliability (over 10 000 cycles). More importantly, they exhibit ultra‐broad working range (7.4–1 000 000 Pa), high tunability, large‐scale production feasibility, and significant advantage in format miniaturization and creating sensor arrays with self‐defined patterns. The versatility of these devices is demonstrated in various human activity monitoring and spatial pressure mapping as electronic skins. Furthermore, utilizing printing methods, a flexible smart insole with a high level of integration for both foot pressure and temperature mapping is demonstrated. The scalable and cost‐effective manufacturing along with the good comprehensive performance of the pressure sensors makes them very attractive for future development of wearable smart devices and human–machine interfaces.

     
    more » « less
  3. Abstract

    Wearable sensing platforms have been rapidly advanced over recent years, thanks to numerous achievements in a variety of sensor fabrication techniques. However, the development of a flexible proximity sensor that can perform in a large range of object mobility remains a challenge. Here, a polymer-based sensor that utilizes a nanostructure composite as the sensing element has been presented for forthcoming usage in healthcare and automotive applications. Thermoplastic Polyurethane (TPU)/Carbon Nanotubes (CNTs) composites are capable of detecting presence of an external object in a wide range of distance. The proximity sensor exhibits an unprecedented detection distance of 120 mm with a resolution of 0.3%/mm. The architecture and manufacturing procedures of TPU/CNTs sensor are straightforward and performance of the proximity sensor shows robustness to reproducibility as well as excellent electrical and mechanical flexibility under different bending radii and over hundreds of bending cycles with variation of 4.7% and 4.2%, respectively. Tunneling and fringing effects are addressed as the sensing mechanism to explain significant capacitance changes. Percolation threshold analysis of different TPU/CNT contents indicated that nanocomposites having 2 wt% carbon nanotubes are exhibiting excellent sensing capabilities to achieve maximum detection accuracy and least noise among others. Fringing capacitance effect of the structure has been systematically analyzed by ANSYS Maxwell (Ansoft) simulation, as the experiments precisely supports the sensitivity trend in simulation. Our results introduce a new mainstream platform to realize an ultrasensitive perception of objects, presenting a promising prototype for application in wearable proximity sensors for motion analysis and artificial electronic skin.

     
    more » « less
  4. Abstract

    Wearable electromechanical sensors are essential to improve health monitoring and off‐site point‐of‐care applications. However, their practicality is restricted by narrow ranges of detection, failure to simultaneously sense static and dynamic pressures, and low durability. Here, an all‐fabric pressure sensor with high sensitivity in a broad range of pressures, from subtle heart pulses to body posture, exceeding that of previously‐reported sensors is introduced. By taking advantage of chemical vapor deposition of p‐doped poly(3,4‐ethylenedioxythiophene) chloride (PEDOT‐Cl) on two natural textiles (cotton gauze and cotton balls), multiscale tunable pressure sensitivity with low power demand for data read‐out is obtained. To protect the sensor against humidity induced degradations, the sensor is encapsulated with a hydrophobic coating that leads to ultrastability of the sensor performance even after 1 week of exposure to 100% relative humidity and 20 laundry cycles. The sensor reveals excellent performance retention of >99% over 70 000 bending cycles under ambient conditions. The varied utility of this sensor for health monitoring is demonstrated by recording heartbeats, respiration, and joint movements. Furthermore, using this sensor, grip strength is successfully detected by 93.6% accuracy as compared to commercial dynamometer, speaking of its potential as the first fabric‐based sensor allowing for personalized real‐time grip strength analysis.

     
    more » « less
  5. Abstract

    With the recent development of wearable electronics and smart textiles, flexible sensor technology is gaining increasing attention. Compared to flexible film‐based sensors, multimaterial fiber‐based technology offers unique advantages due to the breathability, durability, wear resistance, and stretchability in fabric structures. Despite the significant progress made in the fabrication and application of fiber‐based sensors, none of the existing fiber technologies allow for fully distributed pressure or temperature sensing. Herein, the design and fabrication of thermally drawn multi‐material fibers that offer distributed temperature and pressure measurement capability is reported. Thermoplastic materials, thermoplastic elastomers, and metal electrodes are successfully co‐drawn in one fiber. The embedded electrodes inside the fibers form a parallel wire transmission line, and the local characteristic impedance is designed to change with the temperature or pressure. The electrical frequency domain reflectometry is used to interrogate the impedance change along the fiber and provides information with high spatial resolution. The two types of fibers reported in this manuscript have a pressure sensitivity of 4 kPa and a temperature sensitivity of 2 °C, respectively. This work can pave the road for development of functional fibers and textiles for pressure and temperature mapping.

     
    more » « less