skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 14, 2025

Title: Stereoselective Radical Acylfluoroalkylation of Bicyclobutanes via N‐Heterocyclic Carbene Catalysis
Abstract Cyclobutanes are prominent structural components in natural products and drug molecules. With the advent of strain‐release‐driven synthesis, ring‐opening reactions of bicyclo[1.1.0]butanes (BCBs) provide an attractive pathway to construct these three‐dimensional structures. However, the stereoselective difunctionalization of the central C−C σ‐bonds remains challenging. Reported herein is a covalent‐based organocatalytic strategy that exploits radical NHC catalysis to achieve diastereoselective acylfluoroalkylation of BCBs under mild conditions. The Breslow enolate acts as a single electron donor and provides an NHC‐bound ketyl radical with appropriate steric hindrance, which effectively distinguishes between the two faces of transient cyclobutyl radicals. This operationally simple method tolerates various fluoroalkyl reagents and common functional groups, providing a straightforward access to polysubstituted cyclobutanes (75 examples, up to >19 : 1 d.r.). The combined experimental and theoretical investigations of this organocatalytic system confirm the formation of the NHC‐derived radical and provide an understanding of how stereoselective radical‐radical coupling occurs.  more » « less
Award ID(s):
2153972
PAR ID:
10567580
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
64
Issue:
4
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Substituted propargyl acetates are converted into 4‐boryl‐2(5H)‐furanones upon thermolysis in the presence of an N‐heterocyclic carbene borane (NHC‐borane) and di‐tert‐butyl peroxide. The acetyl methyl group is lost during the reaction as methane. Evidence suggests that the reaction proceeds by a sequence of radical events including: 1) addition of an NHC‐boryl radical to the triple bond; 2) cyclization of the resultant β‐borylalkenyl radical to the ester carbonyl group; 3) β‐scission of the so‐formed alkoxy radical to provide the 4‐boryl‐2(5H)‐furanone and a methyl radical; and 4) hydrogen abstraction from the NHC‐borane to return the initial NHC‐boryl radical and methane. 
    more » « less
  2. Abstract An N‐heterocyclic‐carbene‐ligated 3‐benzoborepin with a bridged structure has been synthesized by double radicaltrans‐hydroboration of benzo[3,4]cycloundec‐3‐ene‐1,5‐diyne with an N‐heterocyclic carbene borane. The thermal reaction of the NHC‐ligated borepin at 150 °C gives an isolable NHC‐boranorcaradiene. Experiments and density functional theory calculations support a mechanism whereby the borepin initially rearranges to a boranorcaradiene by a thermal 6π‐electrocyclic reaction. This is followed by 1,5‐boron shift to give a rearranged boranorcaradiene. This shift occurs with stereoinversion at boron through a transition state with open‐shell diradical character. This is the first example of the isolation of a boranorcaradiene from a thermal reaction of a borepin. 
    more » « less
  3. Abstract The enantioselective total synthesis of the rearranged spongian diterpenoid (−)‐macfarlandin C is reported. This is the first synthesis of a rearranged spongian diterpenoid in which the bulky hydrocarbon fragment is joined via a quaternary carbon to the highly hindered concave face of thecis‐2,8‐dioxabicyclo[3.3.0]octan‐3‐one moiety. The strategy involves a late‐stage fragment coupling between a tertiary carbon radical and an electrophilic butenolide resulting in the stereoselective formation of vicinal quaternary and tertiary stereocenters. A stereoselective Mukaiyama hydration that orients a pendant carboxymethyl side chaincisto the bulky octahydronapthalene substituent was pivotal in fashioning the challenging concave‐substitutedcis‐dioxabicyclo[3.3.0]octanone fragment. 
    more » « less
  4. Radical cations generated from the oxidation of CC π-bonds are synthetically useful reactive intermediates for C–C and C–X bond formation. Radical cation formation, induced by sub-stoichiometric amounts of external oxidant, are important intermediates in the Woodward–Hoffmann thermally disallowed [2 + 2] cycloaddition of electron-rich alkenes. Using density functional theory (DFT), we report the detailed mechanisms underlying the intermolecular heterodimerisation of anethole and β-methylstyrene to give unsymmetrical, tetra-substituted cyclobutanes. Reactions between trans -alkenes favour the all-trans adduct, resulting from a kinetic preference for anti -addition reinforced by reversibility at ambient temperatures since this is also the thermodynamic product; on the other hand, reactions between a trans -alkene and a cis -alkene favour syn -addition, while exocyclic rotation in the acyclic radical cation intermediate is also possible since C–C forming barriers are higher. Computations are consistent with the experimental observation that hexafluoroisopropanol ( HFIP ) is a better solvent than acetonitrile, in part due to its ability to stabilise the reduced form of the hypervalent iodine initiator by hydrogen bonding, but also through the stabilisation of radical cationic intermediates along the reaction coordinate. 
    more » « less
  5. Tuning solubility and mechanical activation alters the stereoselectivity of the [2 + 2] photochemical cycloaddition of acenaphthylene. Photomechanochemical conditions produce the syn cyclobutane, whereas the solid-state reaction in the absence of mechanical activation provides the anti . When the photochemical dimerization occurs in a solubilizing organic solvent, there is no selectivity. Dimerization in H 2 O, in which acenaphthylene is insoluble, provides the anti product. DFT calculations reveal that insoluble and solid-state reactions proceed via a covalently bonded excimer, which drives anti selectivity. Alternatively, the noncovalently bound syn conformer is more mechanosusceptible than the anti , meaning it experiences greater destabilization, thereby producing the syn product under photomechanochemical conditions. Cyclobutanes are important components of biologically active natural products and organic materials, and we demonstrate stereoselective methods for obtaining syn or anti cyclobutanes under mild conditions and without organic solvents. With this work, we validate photomechanochemistry as a viable new direction for the preparation of complex organic scaffolds. 
    more » « less