The research experiences for undergraduates (REU) programGreg M. Swain, hailing from the Department of Chemistry at Michigan State University, examines cross-disciplinary training in sustainable chemistry and chemical processes, including the critical role of mentoring and finding research experiences for undergraduates. Sustainability is the practice of reducing the environmental impacts of human existence and conserving natural resources for future generations. Green chemistry is a part of the sustainability approach that encourages manufacturing processes and the design of products that minimize the use and generation of hazardous substances. Stated another way, sustainable chemistry and chemical processes should use resources, including energy and raw materials, “at a rate at which they can be replaced naturally, and the generation” of waste cannot be faster than the rate of their remediation, as Horváth IT points out. (1)
more »
« less
Transitioning to Green Discovery‐Based Catalysis
Abstract Pressure is mounting to minimize the carbon footprint of chemical industry while increasing its sustainability. An argument is made that working from Green Chemistry principles during discovery‐based catalysis results in effective chemistry and circumvents a need to “rediscover” chemical reactivity under sustainable conditions. Examples of comparative success in selected examples of hydrophosphination catalysis in various degrees of development are provided to support two main ideas: 1) Starting from more sustainable practices in chemical discovery is inertia in methodology that should be overcome, and 2) substantial challenges remain in catalysis for which sustainable solutions would positively impact other areas of chemistry. Examples of successes, even in the face of the challenges noted, are presented herein as indications that even as a starting point, sustainability can meet short‐ and long‐term needs. These ideas indicate critical but simple strategies for fundamental research to be impactful in the sustainability of the chemical industry broadly.
more »
« less
- Award ID(s):
- 2101766
- PAR ID:
- 10567647
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 31
- Issue:
- 17
- ISSN:
- 0947-6539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Independent research experiences in sustainable chemistryThe Research Experiences for Undergraduates (REU) programme in the Department of Chemistry at Michigan State University was created to inform students majoring in chemistry, biochemistry and chemical engineering about key societal sustainability challenges and to provide graduate-level independent research experiences that address aspects of these challenges. The REU programme exposes students to how sustainable practices are impacting research and technology development in chemistry and chemical engineering. The 10-week summer programme introduces students, many of whom are engaging in graduate-level research for the first time, to the multiple steps in the research process: (i) formulate research questions and a hypothesis, (ii) create a research design, (iii) execute an experimental plan, (iv) data analysis and interpretation, and (v) report out on the findings and their significance.more » « less
-
Abstract Many of the greatest challenges facing society today likely have molecular solutions that await discovery. However, the process of identifying and manufacturing such molecules has remained slow and highly specialist dependent. Interfacing the fields of artificial intelligence (AI) and synthetic organic chemistry has the potential to powerfully address both limitations. The Molecule Maker Lab Institute (MMLI) brings together a team of chemists, engineers, and AI‐experts from the University of Illinois Urbana‐Champaign (UIUC), Pennsylvania State University, and the Rochester Institute of Technology, with the goal of accelerating the discovery, synthesis and manufacture of complex organic molecules. Advanced AI and machine learning (ML) methods are deployed in four key thrusts: (1) AI‐enabled synthesis planning, (2) AI‐enabled catalyst development, (3) AI‐enabled molecule manufacturing, and (4) AI‐enabled molecule discovery. The MMLI's new AI‐enabled synthesis platform integrates chemical and enzymatic catalysis with literature mining and ML to predict the best way to make new molecules with desirable biological and material properties. The MMLI is transforming chemical synthesis and generating use‐inspired AI advances. Simultaneously, the MMLI is also acting as a training ground for the next generation of scientists with combined expertise in chemistry and AI. Outreach efforts aimed toward high school students and the public are being used to show how AI‐enabled tools can help to make chemical synthesis accessible to nonexperts.more » « less
-
Abstract The potential energy of molecular species and their conformers can be computed with a wide range of computational chemistry methods, from molecular mechanics to ab initio quantum chemistry. However, the proper choice of the computational approach based on computational cost and reliability of calculated energies is a dilemma, especially for large molecules. This dilemma is proved to be even more problematic for studies that require hundreds and thousands of calculations, such as drug discovery. On the other hand, driven by their pattern recognition capabilities, neural networks started to gain popularity in the computational chemistry community. During the last decade, many neural network potentials have been developed to predict a variety of chemical information of different systems. Neural network potentials are proved to predict chemical properties with accuracy comparable to quantum mechanical approaches but with the cost approaching molecular mechanics calculations. As a result, the development of more reliable, transferable, and extensible neural network potentials became an attractive field of study for researchers. In this review, we outlined an overview of the status of current neural network potentials and strategies to improve their accuracy. We provide recent examples of studies that prove the applicability of these potentials. We also discuss the capabilities and shortcomings of the current models and the challenges and future aspects of their development and applications. It is expected that this review would provide guidance for the development of neural network potentials and the exploitation of their applicability. This article is categorized under:Data Science > Artificial Intelligence/Machine LearningMolecular and Statistical Mechanics > Molecular InteractionsSoftware > Molecular Modelingmore » « less
-
Solvents are the major source of chemical waste from synthetic chemistry labs. Growing attention to more environmentally friendly sustainable processes demands novel technologies to substitute toxic or hazardous solvents. If not always, sometimes, water can be a suitable substitute for organic solvents, if used appropriately. However, the sole use of water as a solvent remains non-practical due to its incompatibility with organic reagents. Nonetheless, over the past few years, new additives have been disclosed to achieve chemistry in water that also include aqueous micelles as nanoreactors. Although one cannot claim micellar catalysis to be a greener technology for every single transformation, it remains the sustainable or greener alternative for many reactions. Literature precedents support that micellar technology has much more potential than just as a reaction medium, i.e. , the role of the amphiphile as a ligand obviating phosphine ligands in catalysis, the shielding effect of micelles to protect water-sensitive reaction intermediates in catalysis, and the compartmentalization effect. While compiling the powerful impact of micellar catalysis, this article highlights two diverse recent technologies: (i) the design and employment of the surfactant PS-750-M in selective catalysis; (ii) the use of the semisynthetic HPMC polymer to enable ultrafast reactions in water.more » « less
An official website of the United States government
