skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Waypoint-Based Reinforcement Learning for Robot Manipulation Tasks
Robot arms should be able to learn new tasks. One framework here is reinforcement learning, where the robot is given a reward function that encodes the task, and the robot autonomously learns actions to maximize its reward. Existing approaches to reinforcement learning often frame this problem as a Markov decision process, and learn a policy (or a hierarchy of policies) to complete the task. These policies reason over hundreds of fine-grained actions that the robot arm needs to take: e.g., moving slightly to the right or rotating the end-effector a few degrees. But the manipulation tasks that we want robots to perform can often be broken down into a small number of high-level motions: e.g., reaching an object or turning a handle. In this paper we therefore propose a waypoint-based approach for model-free reinforcement learning. Instead of learning a low-level policy, the robot now learns a trajectory of waypoints, and then interpolates between those waypoints using existing controllers. Our key novelty is framing this waypoint-based setting as a sequence of multi-armed bandits: each bandit problem corresponds to one waypoint along the robot’s motion. We theoretically show that an ideal solution to this reformulation has lower regret bounds than standard frameworks. We also introduce an approximate posterior sampling solution that builds the robot’s motion one waypoint at a time. Results across benchmark simulations and two real-world experiments suggest that this proposed approach learns new tasks more quickly than state-of-the-art baselines. See our website here: https://collab.me.vt.edu/rl-waypoints/  more » « less
Award ID(s):
2129201 2205241
PAR ID:
10567710
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Date Published:
Journal Name:
Proceedings of the International Conference on Intelligent Robots and Systems
ISSN:
2153-0866
ISBN:
979-8-3503-7770-5
Page Range / eLocation ID:
541 to 548
Format(s):
Medium: X
Location:
Abu Dhabi, United Arab Emirates
Sponsoring Org:
National Science Foundation
More Like this
  1. One approach to Imitation Learning is Behavior Cloning, in which a robot observes a supervisor and infers a control policy. A known problem with this “off-policy” approach is that the robot’s errors compound when drifting away from the supervisor’s demonstrations. On-policy, techniques alleviate this by iteratively collecting corrective actions for the current robot policy. However, these techniques can be tedious for human supervisors, add significant computation burden, and may visit dangerous states during training. We propose an off-policy approach that injects noise into the supervisor’s policy while demonstrating. This forces the supervisor to demonstrate how to recover from errors. We propose a new algorithm, DART (Disturbances for Augmenting Robot Trajectories), that collects demonstrations with injected noise, and optimizes the noise level to approximate the error of the robot’s trained policy during data collection. We compare DART with DAgger and Behavior Cloning in two domains: in simulation with an algorithmic supervisor on the MuJoCo tasks (Walker, Humanoid, Hopper, Half-Cheetah) and in physical experiments with human supervisors training a Toyota HSR robot to perform grasping in clutter. For high dimensional tasks like Humanoid, DART can be up to 3x faster in computation time and only decreases the supervisor’s cumulative reward by 5% during training, whereas DAgger executes policies that have 80% less cumulative reward than the supervisor. On the grasping in clutter task, DART obtains on average a 62% performance increase over Behavior Cloning. 
    more » « less
  2. This paper presents a framework to learn the reward function underlying high-level sequential tasks from demonstrations. The purpose of reward learning, in the context of learning from demonstration (LfD), is to generate policies that mimic the demonstrator’s policies, thereby enabling imitation learning. We focus on a human-robot interaction(HRI) domain where the goal is to learn and model structured interactions between a human and a robot. Such interactions can be modeled as a partially observable Markov decision process (POMDP) where the partial observability is caused by uncertainties associated with the ways humans respond to different stimuli. The key challenge in finding a good policy in such a POMDP is determining the reward function that was observed by the demonstrator. Existing inverse reinforcement learning(IRL) methods for POMDPs are computationally very expensive and the problem is not well understood. In comparison, IRL algorithms for Markov decision process (MDP) are well defined and computationally efficient. We propose an approach of reward function learning for high-level sequential tasks from human demonstrations where the core idea is to reduce the underlying POMDP to an MDP and apply any efficient MDP-IRL algorithm. Our extensive experiments suggest that the reward function learned this way generates POMDP policies that mimic the policies of the demonstrator well. 
    more » « less
  3. Meila, Marina; Zhang, Tong (Ed.)
    Transfer in reinforcement learning is based on the idea that it is possible to use what is learned in one task to improve the learning process in another task. For transfer between tasks which share transition dynamics but differ in reward function, successor features have been shown to be a useful representation which allows for efficient computation of action-value functions for previously-learned policies in new tasks. These functions induce policies in the new tasks, so an agent may not need to learn a new policy for each new task it encounters, especially if it is allowed some amount of suboptimality in those tasks. We present new bounds for the performance of optimal policies in a new task, as well as an approach to use these bounds to decide, when presented with a new task, whether to use cached policies or learn a new policy. 
    more » « less
  4. Learning from Demonstration (LfD) is a promising approach to enable Multi-Robot Systems (MRS) to acquire complex skills and behaviors. However, the intricate interactions and coordination challenges in MRS pose significant hurdles for effective LfD. In this paper, we present a novel LfD framework specifically designed for MRS, which leverages visual demonstrations to capture and learn from robot-robot and robot-object interactions. Our framework introduces the concept of Interaction Keypoints (IKs) to transform the visual demonstrations into a representation that facilitates the inference of various skills necessary for the task. The robots then execute the task using sensorimotor actions and reinforcement learning (RL) policies when required. A key feature of our approach is the ability to handle unseen contact-based skills that emerge during the demonstration. In such cases, RL is employed to learn the skill using a classifier-based reward function, eliminating the need for manual reward engineering and ensuring adaptability to environmental changes. We evaluate our framework across a range of mobile robot tasks, covering both behavior-based and contact-based domains. The results demonstrate the effectiveness of our approach in enabling robots to learn complex multi-robot tasks and behaviors from visual demonstrations. 
    more » « less
  5. One promising approach towards effective robot decision making in complex, long-horizon tasks is to sequence together parameterized skills. We consider a setting where a robot is initially equipped with (1) a library of parameterized skills, (2) an AI planner for sequencing together the skills given a goal, and (3) a very general prior distribution for selecting skill parameters. Once deployed, the robot should rapidly and autonomously learn to improve its performance by specializing its skill parameter selection policy to the particular objects, goals, and constraints in its environment. In this work, we focus on the active learning problem of choosing which skills to practice to maximize expected future task success. We propose that the robot should estimate the competence of each skill, extrapolate the competence (asking: “how much would the competence improve through practice?”), and situate the skill in the task distribution through competence- aware planning. This approach is implemented within a fully autonomous system where the robot repeatedly plans, practices, and learns without any environment resets. Through experiments in simulation, we find that our approach learns effective pa- rameter policies more sample-efficiently than several baselines. Experiments in the real-world demonstrate our approach’s ability to handle noise from perception and control and improve the robot’s ability to solve two long-horizon mobile-manipulation tasks after a few hours of autonomous practice. Project website: http://ees.csail.mit.edu 
    more » « less