To tackle the severe fine particle (PM2.5) pollution in China, the government has implemented stringent control policies mainly on power plants, industry, and transportation since 2005, but estimates of the effectiveness of the policy and the temporal trends in health impacts are subject to large uncertainties. By adopting an integrated approach that combines chemical transport simulation, ambient/household exposure evaluation, and health-impact assessment, we find that the integrated population-weighted exposure to PM2.5(IPWE) decreased by 47% (95% confidence interval, 37–55%) from 2005 [180 (146–219) μg/m3] to 2015 [96 (83–111) μg/m3]. Unexpectedly, 90% (86–93%) of such reduction is attributed to reduced household solid-fuel use, primarily resulting from rapid urbanization and improved incomes rather than specific control policies. The IPWE due to household fuels for both cooking and heating decreased, but the impact of cooking is significantly larger. The reduced household-related IPWE is estimated to avoid 0.40 (0.25–0.57) million premature deaths annually, accounting for 33% of the PM2.5-induced mortality in 2015. The IPWE would be further reduced by 63% (57–68%) if the remaining household solid fuels were replaced by clean fuels, which would avoid an additional 0.51 (0.40–0.64) million premature deaths. Such a transition to clean fuels, especially for heating, requires technology innovation and policy support to overcome the barriers of high cost of distribution systems, as is recently being attempted in the Beijing–Tianjin–Hebei area. We suggest that household-fuel use be more highly prioritized in national control policies, considering its effects on PM2.5exposures.
more »
« less
Household air pollution exposure and risk of tuberculosis: a case–control study of women in Lilongwe, Malawi
IntroductionGlobally, 3–4 billion people rely on solid fuels for cooking, and 1 billion use kerosene to light their homes. While household air pollution (HAP) emitted from burning these fuels has well-established links to numerous health outcomes, the relationship between active tuberculosis (TB) and HAP exposure remains inconclusive. MethodsWe explore the association between HAP exposure and TB among adult women in Lilongwe’s high-density suburbs using hospital and community-based health data, objectively measured exposure to HAP, and sociodemographic data controlling for individual, household and community-level confounders. Only one other study combines public health, exposure and sociodemographic data to explore the association between HAP and TB. We report results from a case–control study of 377 primary cooks (76 cases; 301 controls) on the association between risk of developing active TB and HAP exposure. We calculate ORs for developing active TB using indicators of HAP exposure including primary fuel used for cooking, cooking location and frequency of kerosene use for lighting, and in a subset of households, by directly measured cooking area and personal exposure to fine particulate matter (PM2.5) and carbon monoxide. ResultsWe are unable to find an association between self-reported cooking with solid fuels and TB in our sample; we do find that increased frequency of kerosene use for lighting is associated with significantly higher odds of TB. Household area PM2.5concentration is the only direct HAP measure associated with significantly higher odds of TB. We find that 16.8% of the relationship between TB and kerosene use is mediated by increases in area PM2.5. ConclusionOur findings suggest that efforts to reduce the risk of active TB within the home environment should include strategies to reduce or eliminate kerosene, commonly used for lighting and cooking in many low-income country settings.
more »
« less
- Award ID(s):
- 1743741
- PAR ID:
- 10567724
- Publisher / Repository:
- BMJ
- Date Published:
- Journal Name:
- BMJ Public Health
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2753-4294
- Page Range / eLocation ID:
- e000176
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Yun, Geun Young (Ed.)We use air pollution exposure measurements and household survey data from four studies conducted across three countries in sub‐Saharan Africa (SSA) to analyze the association between carbon monoxide (CO) exposure from cooking with biomass and indicators of cognitive impairment. While there is strong evidence on the relationship between ambient air pollution exposure and cognitive impairment from studies in high‐income countries, relatively little research has focused on household air pollution (HAP) in low‐income country settings where risks of HAP exposure are high. This study is the first to our knowledge to focus on the association between HAP exposure (specifically CO exposure) and cognitive impairment across diverse settings in SSA. We use 24‐hour measurements of primary cooks’ exposure to CO across four study sites: urban Zambia (n= 493); urban Malawi (n= 130); rural Malawi (n= 102); and urban Rwanda (n= 2,576). We model the estimated percent carboxyhemoglobin (%COHb) of cooks and map values to a toxicological profile for risk of cognitive impairment. We find that across all study settings, cooks’ average %COHb levels are below levels of daily concern, but that cooks who use charcoal for preparing greater than 40% of meals are more likely to spend additional time at higher levels of risk. For the urban Zambia sample, we compare %COHb and frequency of charcoal use to a series of cognitive test scores and find no consistent relationships between %COHb and cognitive test scores. High levels of daily CO exposure from cooks across SSA highlight the potential for longer‐term negative cognitive (and other) health outcomes motivating additional research and efforts to characterize and mitigate risk.more » « less
-
Abstract Most fine ambient particulate matter (PM2.5)-based epidemiological models use globalized concentration-response (CR) functions assuming that the toxicity of PM2.5is solely mass-dependent without considering its chemical composition. Although oxidative potential (OP) has emerged as an alternate metric of PM2.5toxicity, the association between PM2.5mass and OP on a large spatial extent has not been investigated. In this study, we evaluate this relationship using 385 PM2.5samples collected from 14 different sites across 4 different continents and using 5 different OP (and cytotoxicity) endpoints. Our results show that the relationship between PM2.5mass vs. OP (and cytotoxicity) is largely non-linear due to significant differences in the intrinsic toxicity, resulting from a spatially heterogeneous chemical composition of PM2.5. These results emphasize the need to develop localized CR functions incorporating other measures of PM2.5properties (e.g., OP) to better predict the PM2.5-attributed health burdens.more » « less
-
Abstract AimTwo important environmental hazards for nocturnally migrating birds are artificial light at night (ALAN) and air pollution, with ambient fine particulate matter (PM2.5) considered to be especially harmful. Nocturnally migrating birds are attracted to ALAN during seasonal migration, which could increase exposure to PM2.5. Here, we examine PM2.5concentrations and PM2.5trends and the spatial correlation between ALAN and PM2.5within the geographical ranges of the world’s nocturnally migrating birds. LocationGlobal. Time period1998–2018. Major taxa studiedNocturnally migrating birds. MethodsWe intersected a global database of annual mean PM2.5concentrations over a 21‐year period (1998–2018) with the geographical ranges (breeding, non‐breeding and regions of passage) of 225 nocturnally migrating bird species in three migration flyways (Americas,n = 143; Africa–Europe,n = 36; and East Asia–Australia,n = 46). For each species, we estimated PM2.5concentrations and trends and measured the correlation between ALAN and PM2.5, which we summarized by season and flyway. ResultsCorrelations between ALAN and PM2.5were significantly positive across all seasons and flyways. The East Asia–Australia flyway had the strongest ALAN–PM2.5correlations within regions of passage, the highest PM2.5concentrations across all three seasons and the strongest positive PM2.5trends on the non‐breeding grounds and within regions of passage. The Americas flyway had the strongest negative air pollution trends on the non‐breeding grounds and within regions of passage. The breeding grounds had similarly negative air pollution trends within the three flyways. Main conclusionsThe combined threats of ALAN and air pollution are greatest and likely to be increasing within the East Asia–Australia flyway and lowest and likely to be decreasing within the Americas and Africa–Europe flyways. Reversing PM2.5trends in the East Asia–Australia flyway and maintaining negative PM2.5trends in the Americas and Africa–Europe flyways while reducing ALAN levels would likely be beneficial for the nocturnally migrating bird populations in each region.more » « less
-
Abstract Ambient fine particulate matter (PM2.5) is the world’s leading environmental health risk factor. Quantification is needed of regional contributions to changes in global PM2.5exposure. Here we interpret satellite-derived PM2.5estimates over 1998-2019 and find a reversal of previous growth in global PM2.5air pollution, which is quantitatively attributed to contributions from 13 regions. Global population-weighted (PW) PM2.5exposure, related to both pollution levels and population size, increased from 1998 (28.3 μg/m3) to a peak in 2011 (38.9 μg/m3) and decreased steadily afterwards (34.7 μg/m3in 2019). Post-2011 change was related to exposure reduction in China and slowed exposure growth in other regions (especially South Asia, the Middle East and Africa). The post-2011 exposure reduction contributes to stagnation of growth in global PM2.5-attributable mortality and increasing health benefits per µg/m3marginal reduction in exposure, implying increasing urgency and benefits of PM2.5mitigation with aging population and cleaner air.more » « less
An official website of the United States government

