Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
IntroductionGlobally, 3–4 billion people rely on solid fuels for cooking, and 1 billion use kerosene to light their homes. While household air pollution (HAP) emitted from burning these fuels has well-established links to numerous health outcomes, the relationship between active tuberculosis (TB) and HAP exposure remains inconclusive. MethodsWe explore the association between HAP exposure and TB among adult women in Lilongwe’s high-density suburbs using hospital and community-based health data, objectively measured exposure to HAP, and sociodemographic data controlling for individual, household and community-level confounders. Only one other study combines public health, exposure and sociodemographic data to explore the association between HAP and TB. We report results from a case–control study of 377 primary cooks (76 cases; 301 controls) on the association between risk of developing active TB and HAP exposure. We calculate ORs for developing active TB using indicators of HAP exposure including primary fuel used for cooking, cooking location and frequency of kerosene use for lighting, and in a subset of households, by directly measured cooking area and personal exposure to fine particulate matter (PM2.5) and carbon monoxide. ResultsWe are unable to find an association between self-reported cooking with solid fuels and TB in our sample; we do find that increased frequency of kerosene use for lighting is associated with significantly higher odds of TB. Household area PM2.5concentration is the only direct HAP measure associated with significantly higher odds of TB. We find that 16.8% of the relationship between TB and kerosene use is mediated by increases in area PM2.5. ConclusionOur findings suggest that efforts to reduce the risk of active TB within the home environment should include strategies to reduce or eliminate kerosene, commonly used for lighting and cooking in many low-income country settings.more » « less
-
Yun, Geun Young (Ed.)We use air pollution exposure measurements and household survey data from four studies conducted across three countries in sub‐Saharan Africa (SSA) to analyze the association between carbon monoxide (CO) exposure from cooking with biomass and indicators of cognitive impairment. While there is strong evidence on the relationship between ambient air pollution exposure and cognitive impairment from studies in high‐income countries, relatively little research has focused on household air pollution (HAP) in low‐income country settings where risks of HAP exposure are high. This study is the first to our knowledge to focus on the association between HAP exposure (specifically CO exposure) and cognitive impairment across diverse settings in SSA. We use 24‐hour measurements of primary cooks’ exposure to CO across four study sites: urban Zambia (n= 493); urban Malawi (n= 130); rural Malawi (n= 102); and urban Rwanda (n= 2,576). We model the estimated percent carboxyhemoglobin (%COHb) of cooks and map values to a toxicological profile for risk of cognitive impairment. We find that across all study settings, cooks’ average %COHb levels are below levels of daily concern, but that cooks who use charcoal for preparing greater than 40% of meals are more likely to spend additional time at higher levels of risk. For the urban Zambia sample, we compare %COHb and frequency of charcoal use to a series of cognitive test scores and find no consistent relationships between %COHb and cognitive test scores. High levels of daily CO exposure from cooks across SSA highlight the potential for longer‐term negative cognitive (and other) health outcomes motivating additional research and efforts to characterize and mitigate risk.more » « less
-
Cowell, C., Gallaher, M., Larson, J., and Schwartz, A. (2022). The Potential for Solar-Powered Groundwater Irrigation in Sub-Saharan Africa: An Exploratory Analysis. RTI Press Publication No. OP‑0079‑2211. Research Triangle Park, NC: RTI Press. https://doi.org/10.3768/rtipress.2022.op.0079.2211more » « less
-
Abstract What is the effect of migration on fuel use in rural Zambia? Opportunities to increase income can be scarce in this setting; in response, households may pursue a migration strategy to increase resources as well as to mitigate risk. Migrant remittances may make it possible for households to shift from primary reliance on firewood to charcoal, and the loss of productive labor through migration may reinforce this shift. This paper uses four waves of panel data collected as part of the Child Grant Programme in rural Zambia to examine the connection between migration and the choice of firewood or charcoal as cooking fuel and finds evidence for both mechanisms. Importantly, this paper considers migration as a process, including out as well as return migration, embedding it in the context of household dynamics generally. Empirical results suggest that while out-migration helps move households away from firewood as a fuel source, return migration moves them back, but because the former is more common, the overall effect of migration is to shift households away from primary reliance on firewood.more » « less
An official website of the United States government

Full Text Available