Abstract The ocean carbon reservoir controls atmospheric carbon dioxide (CO2) on millennial timescales. Radiocarbon (14C) anomalies in eastern North Pacific sediments suggest a significant release of geologic14C‐free carbon at the end of the last ice age but without evidence of ocean acidification. Using inverse carbon cycle modeling optimized with reconstructed atmospheric CO2and14C/C, we develop first‐order constraints on geologic carbon and alkalinity release over the last 17.5 thousand years. We construct scenarios allowing the release of 850–2,400 Pg C, with a maximum release rate of 1.3 Pg C yr−1, all of which require an approximate equimolar alkalinity release. These neutralized carbon addition scenarios have minimal impacts on the simulated marine carbon cycle and atmospheric CO2, thereby demonstrating safe and effective ocean carbon storage. This deglacial phenomenon could serve as a natural analog to the successful implementation of gigaton‐scale ocean alkalinity enhancement, a promising marine carbon dioxide removal method.
more »
« less
Delayed onset of ocean acidification in the Gulf of Maine
Abstract The Gulf of Maine holds significant ecological and economic value for fisheries and communities in north-eastern North America. However, there is apprehension regarding its vulnerability to the effects of increasing atmospheric CO2. Substantial recent warming and the inflow of low alkalinity waters into the Gulf of Maine have raised concerns about the impact of ocean acidification on resident marine calcifiers (e.g. oysters, clams, mussels). With limited seawater pH records, the natural variability and drivers of pH in this region remain unclear. To address this, we present coastal water pH proxy records using boron isotope (δ11B) measurements in long-lived, annually banded, crustose coralline algae (1920–2018 CE). These records indicate seawater pH was low (~ 7.9) for much of the last century. Contrary to expectation, we also find that pH has increased (+ 0.2 pH units) over the past 40 years, despite concurrent rising atmospheric CO2. This increase is attributed to an increased input of high alkalinity waters derived from the Gulf Stream. This delayed onset of ocean acidification is cause for concern. Once ocean circulation-driven buffering effects reach their limit, seawater pH decline may occur swiftly. This would profoundly harm shellfisheries and the broader Gulf of Maine ecosystem.
more »
« less
- PAR ID:
- 10567794
- Publisher / Repository:
- Scientific Reports
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The capacity of aquatic systems to buffer acidification depends on the sum contributions of various chemical species to total alkalinity (TA). Major TA contributors are inorganic, with carbonate and bicarbonate considered the most important. However, growing evidence shows that many rivers, estuaries, and coastal waters contain dissolved organic molecules with charge sites that create organic alkalinity (OrgAlk). This study describes the first comparison of (1) OrgAlk distributions and (2) acid–base properties in contrasting estuary‐plume systems: the Pleasant (Maine, USA) and the St. John (New Brunswick, CA). The substantial concentrations of OrgAlk in each estuary were sometimes not conservative with salinity and typically associated with very low pH. Two approaches to OrgAlk measurement showed consistent differences, indicating acid–base characteristics inconsistent with the TA definition. The OrgAlk fraction of TA ranged from 78% at low salinity to less than 0.4% in the coastal ocean endmember. Modeling of titration data identified three groups of organic charge sites, with mean acid–base dissociation constants (pKa) of 4.2 (± 0.5), 5.9 (± 0.7) and 8.5 (± 0.2). These represented 21% (± 9%), 8% (± 5%), and 71% (± 11%) of titrated organic charge groups. Including OrgAlk, pKa, and titrated organic charge groups in carbonate system calculations improved estimates of pH. However, low and medium salinity, organic‐rich samples demonstrated persistent offsets in calculated pH, even using dissolved inorganic carbon and CO2partial pressure as inputs. These offsets show the ongoing challenge of carbonate system intercomparisons in organic rich systems whereby new techniques and further investigations are needed to fully account for OrgAlk in TA titrations.more » « less
-
Abstract Ocean acidification due to anthropogenic CO2emission reduces ocean pH and carbonate saturation, with the projection that marine calcifiers and associated ecosystems will be negatively affected in the future. On longer time scale, however, recent studies of deep‐sea carbonate sediments suggest significantly increased carbonate production and burial in the open ocean during the warm Middle Miocene. Here, we present new model simulations in comparison to published Miocene carbonate accumulation rates to show that global biogenic carbonate production in the pelagic environment was approximately doubled relative to present‐day values when elevated atmosphericpCO2led to substantial global warming ∼13–15 million years ago. Our analysis also finds that although high carbonate production was associated with high dissolution in the deep‐sea, net pelagic carbonate burial was approximately 30%–45% higher than modern. At the steady state of the long‐term carbon cycle, this requires an equivalent increase in riverine carbonate alkalinity influx during the Middle Miocene, attributable to enhanced chemical weathering under a warmer climate. Elevated biogenic carbonate production resulted in a Miocene ocean that had carbon (dissolved inorganic carbon) and alkalinity (total alkalinity) inventories similar to modern values but was poorly buffered and less saturated in both the surface and the deep ocean relative to modern.more » « less
-
Predicting the pace of acidification in the California Current System (CCS), a productive upwelling system that borders the west coast of North America, is complex because the anthropogenic contribution is intertwined with other natural sources. A central question is whether acidification in the CCS will follow the pace of increasing atmospheric CO2, or if climate effects and other biogeochemical processes will either amplify or attenuate acidification. Here, we apply the boron isotope pH proxy to cold-water orange cup corals to establish a historic level of acidification in the CCS and the Salish Sea, an associated marginal sea. Through a combination of complementary modeling and geochemical approaches, we show that the CCS and Salish Sea have experienced amplified acidification over the industrial era, driven by the interaction between anthropogenic CO2and a thermodynamic buffering effect. From this foundation, we project future acidification in the CCS under elevated CO2emissions. The projected change inpCO2over the 21stcentury will continue to outpace atmospheric CO2, posing challenges to marine ecosystems of biological, cultural, and economic importance.more » « less
-
Coastal systems can exhibit large variability in pH compared to open marine conditions, thus the impacts of ocean acidification (OA) on their resident calcifying organisms are potentially magnified. Further, our understanding of the natural baseline and variability of pH is spatially and temporally limited in coastal settings. In the few coastal locations that have been monitoring seawater pH, records are generally limited to <10 years and are thus unable to provide the full range of centennial to decadal natural variability. This is the case for the Gulf of Maine (northwestern Atlantic), a highly productive region of strategic importance to U.S. fisheries, that is facing multiple environmental stressors including rapid warming and threats from OA. Paleoceanographic proxy records are therefore much needed in this region to reconstruct past pH conditions beyond instrumental records. A clear candidate for this is the boron isotope (d11B) pH proxy provided the d11B sensitivity to pH in long-lived shallow water marine carbonates can be established. To this end, we grew juvenile and adult Arctica islandica (ocean quahog) in flowing seawater tanks for 20.5 weeks in controlled pH (7.4, 7.6, 7.8 or 8.0 (ambient) ± 0.02) and temperature (6, 9 or 12 ± 0.56 °C) conditions at Bowdoin College’s Schiller Coastal Studies Center, Harpswell, Maine (USA). The clams were stained twice with calcein and supplemented with food (Shellfish Diet) throughout the experiment to ensure suitable growth. New shell growth (average 67% increase in maximum shell height and 522% increase in buoyant weight across all treatments), constrained by calcein markings, were sampled for boron isotope analysis (d11B) to determine if shell d11B varied as a function of pH similar to many other calcifying organisms. The results of the culture experiment will yield whether or not Arctica islandica preserves seawater pH information in their shells. If so, the transfer function relating shell d11B to pH will be used to hindcast pH in the central coastal region of the Gulf of Maine during recent centuries. Alternatively, if the shell d11B signal is independent of ambient seawater pH, this may reveal the capacity of Arcticamore » « less
An official website of the United States government

