skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Generalizable Theory-Driven Agent-Based Framework to Study Conflict-Induced Forced Migration
Large-scale population displacements arising from conflict-induced forced migration generate uncertainty and introduce several policy challenges. Addressing these concerns requires an interdisciplinary approach that integrates knowledge from both computational modeling and social sciences. We propose a generalized computational agent-based modeling framework grounded by Theory of Planned Behavior to model conflict-induced migration outflows within Ukraine during the start of that conflict in 2022. Existing migration modeling frameworks that attempt to address policy implications primarily focus on destination while leaving absent a generalized computational framework grounded by social theory focused on the conflict-induced region. We propose an agent-based framework utilizing a spatiotemporal gravity model and a Bi-threshold model over a Graph Dynamical System to update migration status of agents in conflict-induced regions at fine temporal and spatial granularity. This approach significantly outperforms previous work when examining the case of Russian invasion in Ukraine. Policy implications of the proposed framework are demonstrated by modeling the migration behavior of Ukrainian civilians attempting to flee from regions encircled by Russian forces. We also showcase the generalizability of the model by simulating a past conflict in Burundi, an alternative conflict setting. Results demonstrate the utility of the framework for assessing conflict-induced migration in varied settings as well as identifying vulnerable civilian populations.  more » « less
Award ID(s):
1916805 1918656
PAR ID:
10567848
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
AAAI
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
38
Issue:
21
ISSN:
2159-5399
Page Range / eLocation ID:
23027 to 23033
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The ongoing Russian aggression against Ukraine has forced over eight million people to migrate out of Ukraine. Understanding the dynamics of forced migration is essential for policy-making and for delivering humanitarian assistance. Existing work is hindered by a reliance on observational data which is only available well after the fact. In this work, we study the efficacy of a data-driven agent-based framework motivated by social and behavioral theory in predicting outflow of migrants as a result of conflict events during the initial phase of the Ukraine war. We discuss policy use cases for the proposed framework by demonstrating how it can leverage refugee demographic details to answer pressing policy questions. We also show how to incorporate conflict forecast scenarios to predict future conflict-induced migration flows. Detailed future migration estimates across various conflict scenarios can both help to reduce policymaker uncertainty and improve allocation and staging of limited humanitarian resources in crisis settings. 
    more » « less
  2. Does war deepen gender inequalities in politicians’ behavior or help erase them? We draw from the terror management theory developed in psychology to argue that the onset of a violent conflict is likely to push politicians to conform more strongly with traditional gender stereotypes because it helps individuals cope with existential fears. To test our argument, we use data on Ukrainian politicians’ engagement on social media (136,455 Facebook posts by 469 politicians) in the three months before and after the 2022 Russian invasion of Ukraine, and interrupted time series analysis, to assess the effect of conflict on politicians’ behavior. We find that conflict onset deepens gender-stereotypical behavior among politicians in their public engagement. We also show that, consistent with our argument, gender biases among the public are magnified during war. 
    more » « less
  3. null (Ed.)
    The nexus of food, energy, and water systems (FEWS) has become a salient research topic, as well as a pressing societal and policy challenge. Computational modeling is a key tool in addressing these challenges, and FEWS modeling as a subfield is now established. However, social dimensions of FEWS nexus issues, such as individual or social learning, technology adoption decisions, and adaptive behaviors, remain relatively underdeveloped in FEWS modeling and research. Agent-based models (ABMs) have received increasing usage recently in efforts to better represent and integrate human behavior into FEWS research. A systematic review identified 29 articles in which at least two food, energy, or water sectors were explicitly considered with an ABM and/or ABM-coupled modeling approach. Agent decision-making and behavior ranged from reactive to active, motivated by primarily economic objectives to multi-criteria in nature, and implemented with individual-based to highly aggregated entities. However, a significant proportion of models did not contain agent interactions, or did not base agent decision-making on existing behavioral theories. Model design choices imposed by data limitations, structural requirements for coupling with other simulation models, or spatial and/or temporal scales of application resulted in agent representations lacking explicit decision-making processes or social interactions. In contrast, several methodological innovations were also noted, which were catalyzed by the challenges associated with developing multi-scale, cross-sector models. Several avenues for future research with ABMs in FEWS research are suggested based on these findings. The reviewed ABM applications represent progress, yet many opportunities for more behaviorally rich agent-based modeling in the FEWS context remain. 
    more » « less
  4. null (Ed.)
    The notion of face refers to the public self-image of an individual that emerges both from the individual’s own actions as well as from the interaction with others. Modeling face and understanding its state changes throughout a conversation is critical to the study of maintenance of basic human needs in and through interaction. Grounded in the politeness theory of Brown and Levinson (1978), we propose a generalized framework for modeling face acts in persuasion conversations, resulting in a reliable coding manual, an annotated corpus, and computational models. The framework reveals insights about differences in face act utilization between asymmetric roles in persuasion conversations. Using computational models, we are able to successfully identify face acts as well as predict a key conversational outcome (e.g. donation success). Finally, we model a latent representation of the conversational state to analyze the impact of predicted face acts on the probability of a positive conversational outcome and observe several correlations that corroborate previous findings. 
    more » « less
  5. The Russian-Ukrainian conflict spawned a high-intensity war that shattered decades of peace in Europe. The use of drones and social media elevates open-source intelligence as a critical strategic asset. However, information from these sources is sporadic, difficult to confirm, and prone to manipulation. Here, we use open-access spaceborne remote sensing data to probe the damage to infrastructure on and off the frontline at the city, region, and country-wide scales in Ukraine. Nighttime light data and Synthetic Aperture Radar images reveal widespread blackout and unveil the destruction of battleground cities, offering contrasted perspectives on the impact of the conflict. Optical satellite images capture extensive flooding along the Dnipro River in the aftermath of the breach of the Kakhovka dam. Leveraging visible, near-infrared, and microwave satellite data, we bring to light disruption of human activities, havoc in the environment, and the annihilation of entire cities during the protracted conflict. Open-source remote sensing can offer objective information about the nature and extent of devastation during military conflicts. 
    more » « less