skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sulfinamide Formation from the Reaction of Bacillithiol and Nitroxyl
Bacillithiol (BSH) replaces glutathione (GSH) as the most prominent low-molecular-weight thiol in many low G + C gram-positive bacteria. BSH plays roles in metal binding, protein/ enzyme regulation, detoxification, redox buffering, and bacterial virulence. Given the small amounts of BSH isolated from natural sources and relatively lengthy chemical syntheses, the reactions of BSH with pertinent reactive oxygen, nitrogen, and sulfur species remain largely unexplored. We prepared BSH and exposed it to nitroxyl (HNO), a reactive nitrogen species that influences bacterial sulfur metabolism. The profile of this reaction was distinct from HNO oxidation of GSH, which yielded mixtures of disulfide and sulfinamide. The reaction of BSH and HNO (generated from Angeli’s salt) gives only sulfinamide products, including a newly proposed cyclic sulfinamide. Treatment of a glucosamine−cysteine conjugate, which lacks the malic acid group, with HNO forms disulfide, implicating the malic acid group in sulfinamide formation. This finding supports a mechanism involving the formation of an N-hydroxysulfenamide intermediate that dehydrates to a sulfenium ion that can be trapped by water or internally trapped by an amide nitrogen to give the cyclic sulfinamide. The biological relevance of BSH reactivity toward HNO is provided through in vivo experiments demonstrating that Bacillus subtilis exposed to HNO shows a growth phenotype, and a strain unable to produce BSH shows hypersensitivity toward HNO in minimal medium cultures. Thiol analysis of HNO-exposed cultures shows an overall decrease in reduced BSH levels, which is not accompanied by increased levels of BSSB, supporting a model involving the formation of an oxidized sulfinamide derivative, identified in vivo by high-pressure liquid chromatography/mass spectrometry. Collectively, these findings reveal the unique chemistry and biology of HNO with BSH in bacteria that produce this biothiol.  more » « less
Award ID(s):
1716535
PAR ID:
10567884
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Chemical Biology
Volume:
18
Issue:
12
ISSN:
1554-8929
Page Range / eLocation ID:
2524 to 2534
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Low-molecular-weight (LMW) thiols play critical roles in maintaining redox buffer systems required for normal biological function. Glutathione (GSH) represents the most common LMW thiol found in Nature, but Gram-positive bacteria utilize bacillithiol (BSH) or mycothiol (MSH). Nitroxyl (HNO) can influence bacterial transcription through persulfide formation, a biological phenomenon that prompts the examination of the reactions of HNO with these LMW thiols. The development and application of colorimetric and enzymatic (Bacillus subtilis thioredoxin assay) methods combined with mass spectrometry of reaction products show the unique reactivity of BSH to favor sulfinamide adduct formation upon equimolar reaction with HNO. The reaction profile with GSH results in nearly equal distribution between sulfinamide:disulfide, whereas reaction with MSH only yields disulfide. These varied results led to the preparation of a group of BSH and MSH analogs, and their reactions with HNO reveal the requirement for a free amine group for sulfinamide formation. The thiol and amine group pKa's appear critical for sulfinamide generation, with the thiolate acting as a nucleophile to attack HNO and the ammonium donating a proton to facilitate water loss from the N-hydroxysulfenamide intermediate. Furthermore, the B. subtilis thioredoxin system efficiently reduces BSSB with a calculated KM_BSSB = 34 ± 3 μM and Vmax = 152 ± 3.4 nmol/min/nmol TrxR (kcat = 2.5 s−1), but does not reduce bacillithiol sulfinamide. Similarly, this thioredoxin reduces MSSM with a calculated KM_MSSM of 9 ± 2.1 μM and Vmax of 103 ± 7.1 nmol/min/nmol TrxR (kcat = 1.7 s−1). Bacillithiol possesses a unique structure that allows a rapid reaction with HNO to form a stable product that may provide a basis for antibiotic development or clues for further biological roles of nitroxyl. 
    more » « less
  2. Naphthoquinone (1,4-NQ) and its derivatives (NQs, juglone, plumbagin, 2-methoxy-1,4-NQ, and menadione) have a variety of therapeutic applications, many of which are attributed to redox cycling and the production of reactive oxygen species (ROS). We previously demonstrated that NQs also oxidize hydrogen sulfide (H2S) to reactive sulfur species (RSS), potentially conveying identical benefits. Here we use RSS-specific fluorophores, mass spectroscopy, EPR and UV-Vis spectrometry, and oxygen-sensitive optodes to examine the effects of thiols and thiol-NQ adducts on H2S-NQ reactions. In the presence of glutathione (GSH) and cysteine (Cys), 1,4-NQ oxidizes H2S to both inorganic and organic hydroper-/hydropolysulfides (R2Sn, R=H, Cys, GSH; n = 2–4) and organic sulfoxides (GSnOH, n = 1, 2). These reactions reduce NQs and consume oxygen via a semiquinone intermediate. NQs are also reduced as they form adducts with GSH, Cys, protein thiols, and amines. Thiol, but not amine, adducts may increase or decrease H2S oxidation in reactions that are both NQ- and thiol-specific. Amine adducts also inhibit the formation of thiol adducts. These results suggest that NQs may react with endogenous thiols, including GSH, Cys, and protein Cys, and that these adducts may affect both thiol reactions as well as RSS production from H2S. 
    more » « less
  3. Abstract Thiol‐disulfide interchange has been a large field of study for both biochemists and physical organic chemists alike due to its prevalence within biological systems and fundamentally interesting dynamic nature. More recently, efforts have been made to harness the power of this reversible reaction to make self‐assembling systems of macrocyclic molecules. However, less effort has focused on the fundamental work of isolating these assemblies and studying the factors that control the assembly and sorting of these emerging cyclic systems. A more complete fundamental understanding of factors controlling such self‐assembly could also improve understanding of the complex systems biology of thiol exchange while also aiding in the design of dynamic thiol assembly to enable applications ranging from drug delivery and biosensing to new materials synthesis. We have shown previously that pnictogen‐assisted self‐assembly enables formation of discrete disulfide macrocycles and cages without competition from polymer formation for a wide variety of alkyl thiols. In this study, we report the expansion of pnictogen‐assisted self‐assembly methods to form disulfide bearing macrocycles from aryl thiol containing ligands, allowing access to previously unreported molecules. These studies complement classical physical organic and chemical biology studies on the rates and products of aryl thiol oxidation to disulfides, and we show that this self‐assembly method revises some prevailing wisdom from these key classical studies by providing new product distributions and new isolable products in cyclic disulfide formation. 
    more » « less
  4. Not AvaDisulfide-containing synthetic polypeptides hold significant promise as biodegradable and biocompatible carriers for controlled drug and gene delivery, enabling triggered therapeutic release with reduced cytotoxicity. However, disulfide incorporation remains challenging, whether through direct polymerization of disulfide-containing monomers or postpolymerization modification. In this work, we present an innovative and simple strategy to incorporate disulfide bonds into polypeptides using ring-opening polymerization of the N-carboxyanhydride of homocysteine, a thiol-containing amino acid. The polymerization was well-controlled, yielding repeating units up to 100 with narrow dispersity. The pendant side chains were readily converted into various GSH-responsive moieties, including anionic, neutral, zwitterionic, and cationic groups, as well as therapeutic agents toward a wide range of biomedical applications. The drug-loaded amphiphilic polymer-drug conjugates displayed triggered release of intact drug and potent anticancer activities. Furthermore, cationic polyhomocysteine derivatives effectively delivered siRNA, eGFP mRNA, and more complex CRISPR components with extremely low cytotoxicity and excellent transfection efficiency.ilable 
    more » « less
  5. New routes to the formation of macrocyclic molecules are of high interest to the supramolecular chemistry community and the chemistry community at large. Here we describe the incorporation of heterocyclic core units into discrete macrocycles via the utilization of a pnictogen-assisted self-assembly technique. This method allows for the rapid and efficient formation of discreet macrocyclic units from simple dithiol precursors in high yields with good control over macrocycle size. Up to this point, this technique has been reported on primarily benzylic thiol systems with very little incorporation of endohedral heteroatoms in the resulting assemblies. This study demonstrates the effective incorporation of heterocyclic core molecules allowing for the formation of a more functional cavity, resulting in the formation and crystallization of novel furan- and thiophene-based disulfide dimer and trimer macrocycles, respectively, that are isolated from a range of other larger discrete macrocycles that assemble as well. These disulfide macrocycles can be trapped as their more kinetically stable thioether congeners upon sulfur extrusion. 
    more » « less