skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 21, 2025

Title: Playlogue: Dataset and Benchmarks for Analyzing Adult-Child Conversations During Play
There has been growing interest in developing ubiquitous technologies to analyze adult-child speech in naturalistic settings such as free play in order to support children's social and academic development, language acquisition, and parent-child interactions. However, these technologies often rely on off-the-shelf speech processing tools that have not been evaluated on child speech or child-directed adult speech, whose unique characteristics might result in significant performance gaps when using models trained on adult speech. This work introduces the Playlogue dataset containing over 33 hours of long-form, naturalistic, play-based adult-child conversations from three different corpora of preschool-aged children. Playlogue enables researchers to train and evaluate speaker diarization and automatic speech recognition models on child-centered speech. We demonstrate the lack of generalizability of existing state-of-the-art models when evaluated on Playlogue, and show how fine-tuning models on adult-child speech mitigates the performance gap to some extent but still leaves considerable room for improvement. We further annotate over 5 hours of the Playlogue dataset with 8668 validated adult and child speech act labels, which can be used to train and evaluate models to provide clinically relevant feedback on parent-child interactions. We investigate the performance of state-of-the-art language models at automatically predicting these speech act labels, achieving significant accuracy with simple chain-of-thought prompting or minimal fine-tuning. We use inhome pilot data to validate the generalizability of models trained on Playlogue, demonstrating its utility in improving speech and language technologies for child-centered conversations. The Playlogue dataset is available for download at https://huggingface.co/datasets/playlogue/playlogue-v1.  more » « less
Award ID(s):
2124282 2320678
PAR ID:
10568084
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
8
Issue:
4
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 34
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Speech and language development in children are crucial for ensuring effective skills in their long-term learning ability. A child’s vocabulary size at the time of entry into kindergarten is an early indicator of their learning ability to read and potential long-term success in school. The preschool classroom is thus a promising venue for assessing growth in young children by measuring their interactions with teachers as well as classmates. However, to date limited studies have explored such naturalistic audio communications. Automatic Speech Recognition (ASR) technologies provide an opportunity for ’Early Childhood’ researchers to obtain knowledge through automatic analysis of naturalistic classroom recordings in measuring such interactions. For this purpose, 208 hours of audio recordings across 48 daylong sessions are collected in a childcare learning center in the United States using Language Environment Analysis (LENA) devices worn by the preschool children. Approximately 29 hours of adult speech and 26 hours of child speech is segmented using manual transcriptions provided by CRSS transcription team. Traditional as well as End-to-End ASR models are trained on adult/child speech data subset. Factorized Time Delay Neural Network provides a best Word-Error-Rate (WER) of 35.05% on the adult subset of the test set. End-to-End transformer models achieve 63.5% WER on the child subset of the test data. Next, bar plots demonstrating the frequency of WH-question words in Science vs. Reading activity areas of the preschool are presented for sessions in the test set. It is suggested that learning spaces could be configured to encourage greater adult-child conversational engagement given such speech/audio assessment strategies. 
    more » « less
  2. The quality of parent–child interaction is critical for child cognitive development. The Dyadic Parent–Child Interaction Coding System (DPICS) is commonly used to assess parent and child behaviors. However, manual annotation of DPICS codes by parent–child interaction therapists is a time-consuming task. To assist therapists in the coding task, researchers have begun to explore the use of artificial intelligence in natural language processing to classify DPICS codes automatically. In this study, we utilized datasets from the DPICS book manual, five families, and an open-source PCIT dataset. To train DPICS code classifiers, we employed the pre-trained fine-tuned model RoBERTa as our learning algorithm. Our study shows that fine-tuning the pre-trained RoBERTa model achieves the highest results compared to other methods in sentence-based DPICS code classification assignments. For the DPICS manual dataset, the overall accuracy was 72.3% (72.2% macro-precision, 70.5% macro-recall, and 69.6% macro-F-score). Meanwhile, for the PCIT dataset, the overall accuracy was 79.8% (80.4% macro-precision, 79.7% macro-recall, and 79.8% macro-F-score), surpassing the previous highest results of 78.3% accuracy (79% precision, 77% recall) averaged over the eight DPICS classes. These results show that fine-tuning the pre-trained RoBERTa model could provide valuable assistance to experts in the labeling process. 
    more » « less
  3. Assessing child growth in terms of speech and language is a crucial indicator of long term learning ability and life-long progress. Since the preschool classroom provides a potent opportunity for monitoring growth in young children’s interactions, analyzing such data has come into prominence for early childhood researchers. The foremost task of any analysis of such naturalistic recordings would involve parsing and tagging the interactions between adults and young children. An automated tagging system will provide child interaction metrics and would be important for any further processing. This study investigates the language environment of 3-5 year old children using a CRSS based diarization strategy employing an i-vector-based baseline that captures adult-to-child or childto- child rapid conversational turns in a naturalistic noisy early childhood setting. We provide analysis of various loss functions and learning algorithms using Deep Neural Networks to separate child speech from adult speech. Performance is measured in terms of diarization error rate, Jaccard error rate and shows good results for tagging adult vs children’s speech. Distinction between primary and secondary child would be useful for monitoring a given child and analysis is provided for the same. Our diarization system provides insights into the direction for preprocessing and analyzing challenging naturalistic daylong child speech recordings. 
    more » « less
  4. Speech and language development are early indicators of overall analytical and learning ability in children. The preschool classroom is a rich language environment for monitoring and ensuring growth in young children by measuring their vocal interactions with both teachers and classmates. Early childhood researchers recognize the importance in analyzing naturalistic vs. controlled lab recordings to measure both quality and quantity of child interactions. Recently, large language model-based speech technologies have performed well on conversational speech recognition. In this regard, we assess performance of such models on the wide dynamic scenario of early childhood classroom settings. This study investigates an alternate Deep Learning-based Teacher-Student learning solution for recognizing adult speech within preschool interactions. Our proposed adapted model achieves the best F1-score for recognizing most frequent 400 words on test sets for both classrooms. Additionally, F1-scores for alternate word groups provides a breakdown of performance across relevant language-based word-categories. The study demonstrates the prospects of addressing educational assessment needs through communication audio stream analysis, while maintaining both security and privacy of all children and adults. The resulting child communication metrics from this study can also be used for broad-based feedback for teachers. 
    more » « less
  5. The ability to assess children’s conversational interaction is critical in determining language and cognitive proficiency for typically developing and at-risk children. The earlier at-risk child is identified, the earlier support can be provided to reduce the social impact of the speech disorder. To date, limited research has been performed for young child speech recognition in classroom settings. This study addresses speech recognition research with naturalistic children’s speech, where age varies from 2.5 to 5 years. Data augmentation is relatively under explored for child speech. Therefore, we investigate the effectiveness of data augmentation techniques to improve both language and acoustic models. We explore alternate text augmentation approaches using adult data, Web data, and via text generated by recurrent neural networks. We also compare several acoustic augmentation techniques: speed perturbation, tempo perturbation, and adult data. Finally, we comment on child word count rates to assess child speech development. 
    more » « less