In black-box optimization problems, we aim to maximize an unknown objective function, where the function is only accessible through feedbacks of an evaluation or simulation oracle. In real-life, the feedbacks of such oracles are often noisy and available after some unknown delay that may depend on the computation time of the oracle. Additionally, if the exact evaluations are expensive but coarse approximations are available at a lower cost, the feedbacks can have multi-fidelity. In order to address this problem, we propose a generic extension of hierarchical optimistic tree search (HOO), called ProCrastinated Tree Search (PCTS), that flexibly accommodates a delay and noise-tolerant bandit algorithm. We provide a generic proof technique to quantify regret of PCTS under delayed, noisy, and multi-fidelity feedbacks. Specifically, we derive regret bounds of PCTS enabled with delayed-UCB1 (DUCB1) and delayed-UCB-V (DUCBV) algorithms. Given a horizon T, PCTS retains the regret bound of non-delayed HOO for expected delay of O(log T), and worsens by T^((1-α)/(d+2)) for expected delays of O(T^(1-α)) for α ∈ (0,1]. We experimentally validate on multiple synthetic functions and hyperparameter tuning problems that PCTS outperforms the state-of-the-art black-box optimization methods for feedbacks with different noise levels, delays, and fidelity.
more »
« less
This content will become publicly available on January 6, 2026
A Portfolio Approach to Massively Parallel Bayesian Optimization
One way to reduce the time of conducting optimization studies is to evaluate designs in parallel rather than just one-at-a-time. For expensive-to-evaluate black-boxes, batch versions of Bayesian optimization have been proposed. They work by building a surrogate model of the black-box to simultaneously select multiple designs via an infill criterion. Still, despite the increased availability of computing resources that enable large-scale parallelism, the strategies that work for selecting a few tens of parallel designs for evaluations become limiting due to the complexity of selecting more designs. It is even more crucial when the black-box is noisy, necessitating more evaluations as well as repeating experiments. Here we propose a scalable strategy that can keep up with massive batching natively, focused on the exploration/exploitation trade-off and a portfolio allocation. We compare the approach with related methods on noisy functions, for mono and multi-objective optimization tasks. These experiments show orders of magnitude speed improvements over existing methods with similar or better performance.
more »
« less
- Award ID(s):
- 2200234
- PAR ID:
- 10568094
- Publisher / Repository:
- AI Access Foundation
- Date Published:
- Journal Name:
- Journal of Artificial Intelligence Research
- Volume:
- 82
- ISSN:
- 1076-9757
- Page Range / eLocation ID:
- 137 to 167
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider stochastic zeroth-order optimization over Riemannian submanifolds embedded in Euclidean space, where the task is to solve Riemannian optimization problems with only noisy objective function evaluations. Toward this, our main contribution is to propose estimators of the Riemannian gradient and Hessian from noisy objective function evaluations, based on a Riemannian version of the Gaussian smoothing technique. The proposed estimators overcome the difficulty of nonlinearity of the manifold constraint and issues that arise in using Euclidean Gaussian smoothing techniques when the function is defined only over the manifold. We use the proposed estimators to solve Riemannian optimization problems in the following settings for the objective function: (i) stochastic and gradient-Lipschitz (in both nonconvex and geodesic convex settings), (ii) sum of gradient-Lipschitz and nonsmooth functions, and (iii) Hessian-Lipschitz. For these settings, we analyze the oracle complexity of our algorithms to obtain appropriately defined notions of ϵ-stationary point or ϵ-approximate local minimizer. Notably, our complexities are independent of the dimension of the ambient Euclidean space and depend only on the intrinsic dimension of the manifold under consideration. We demonstrate the applicability of our algorithms by simulation results and real-world applications on black-box stiffness control for robotics and black-box attacks to neural networks.more » « less
-
null (Ed.)Abstract Objective-driven adaptive sampling is a widely used tool for the optimization of deterministic black-box functions. However, the optimization of stochastic simulation models as found in the engineering, biological, and social sciences is still an elusive task. In this work, we propose a scalable adaptive batch sampling scheme for the optimization of stochastic simulation models with input-dependent noise. The developed algorithm has two primary advantages: (i) by recommending sampling batches, the designer can benefit from parallel computing capabilities, and (ii) by replicating of previously observed sampling locations the method can be scaled to higher-dimensional and more noisy functions. Replication improves numerical tractability as the computational cost of Bayesian optimization methods is known to grow cubicly with the number of unique sampling locations. Deciding when to replicate and when to explore depends on what alternative minimizes the posterior prediction accuracy at and around the spatial locations expected to contain the global optimum. The algorithm explores a new sampling location to reduce the interpolation uncertainty and replicates to improve the accuracy of the mean prediction at a single sampling location. Through the application of the proposed sampling scheme to two numerical test functions and one real engineering problem, we show that we can reliably and efficiently find the global optimum of stochastic simulation models with input-dependent noise.more » « less
-
Abstract Having the ability to analyze, simulate, and optimize complex systems is becoming more important in all engineering disciplines. Decision‐making using complex systems usually leads to nonlinear optimization problems, which rely on computationally expensive simulations. Therefore, it is often challenging to detect the actual structure of the optimization problem and formulate these problems with closed‐form analytical expressions. Surrogate‐based optimization of complex systems is a promising approach that is based on the concept of adaptively fitting and optimizing approximations of the input–output data. Standard surrogate‐based optimization assumes the degrees of freedom are known a priori; however, in real applications the sparsity and the actual structure of the black‐box formulation may not be known. In this work, we propose to select the correct variables contributing to each objective function and constraints of the black‐box problem, by formulating the identification of the true sparsity of the formulation as a nonlinear feature selection problem. We compare three variable selection criteria based on Support Vector Regression and develop efficient algorithms to detect the sparsity of black‐box formulations when only a limited amount of deterministic or noisy data is available.more » « less
-
Bayesian optimization (BO) is a powerful paradigm for optimizing expensive black-box functions. Traditional BO methods typically rely on separate hand-crafted acquisition functions and surrogate models for the underlying function, and often operate in a myopic manner. In this paper, we propose a novel direct regret optimization approach that jointly learns the optimal model and non-myopic acquisition by distilling from a set of candidate models and acquisitions, and explicitly targets minimizing the multi-step regret. Our framework leverages an ensemble of Gaussian Processes (GPs) with varying hyperparameters to generate simulated BO trajectories, each guided by an acquisition function chosen from a pool of conventional choices, until a Bayesian early stop criterion is met. These simulated trajectories, capturing multi-step exploration strategies, are used to train an end-to-end decision transformer that directly learns to select next query points aimed at improving the ultimate objective. We further adopt a dense training–sparse learning paradigm: The decision transformer is trained offline with abundant simulated data sampled from ensemble GPs and acquisitions, while a limited number of real evaluations refine the GPs online. Experimental results on synthetic and real-world benchmarks suggest that our method consistently outperforms BO baselines, achieving lower simple regret and demonstrating more robust exploration in high-dimensional or noisy settings.more » « less
An official website of the United States government
