skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Supporting the Success of Low-Income Engineering Students through Community-Building (Evaluation)
Over the past twelve years, the ESTEEM program, funded by the NSF S-STEM, at University of California Santa Barbara (UCSB) has supported 161 low-income undergraduate students in engineering. This paper emphasizes the students’ changing needs and what they found supportive over time with a special focus on the shifting needs for community building before, during, and after COVID-19 pandemic remote learning. Without additional support, low-income engineering students, who often reflect additional intersecting minoritized identities and are more likely to be the first in their family to attend college, leave the field at higher rates than their peers. Students who are likely to persist in engineering reported supportive relationships with mentors, positive near peer role models, a strong sense of community, and an intention to complete their engineering major. Yet, accessing these support systems is often challenging for low-income students, who are more likely to work long hours and spend more time off campus and less likely to have adequate opportunities to interact with others in their major and see themselves in role models and as part of that community. The COVID-19 pandemic disrupted the higher education plans and financial viability of UCSB engineering students, especially those from low-income families. In addition to increased financial hardships, these students lacked access to campus educational resources like tutoring and mentors and were more isolated from their on-campus engineering communities. While research has identified needs and programmatic supports likely to encourage student retention in engineering, little is known about the specific needs of low-income students in engineering and how these needs have changed over time. We examined the needs and financial and educational supports of 161 low-income students using ESTEEM evaluation data from 2011 to 2023 who pursued engineering bachelor’s degrees at the University of California at Santa Barbara. Our findings emphasize the types of programmatic supports that were most helpful for students’ education and career pathways in engineering. These results indicate shifting needs for physical space, social interactions with mentors and peers, and have implications for evolving how engineering departments and programs support low-income students to meet their changing needs for persisting in engineering.  more » « less
Award ID(s):
1644265
PAR ID:
10568096
Author(s) / Creator(s):
Publisher / Repository:
ASEE Conferences
Date Published:
Format(s):
Medium: X
Location:
Portland, Oregon
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Persistence across undergraduate science, technology, engineering, and mathematics (STEM) programs is exceptionally low. Recent studies have shown that social support and sense of belonging are particularly important for students who are historically underrepresented in STEM, yet few interventions have directly targeted or investigated these factors. This qualitative study investigates low‐income, high‐achieving undergraduate STEM students' perceptions of their belonging in the context of a 2‐year peer social support group intervention. Interview analysis of 11 participants demonstrates that these STEM students attribute their sense of belonging to feelings or displays of comfort, commonality, community, and concerted effort. The peer group facilitated increases in participants' social support and sense of belonging by allowing participants to build friendships, recognize shared experiences, connect to their campus, build confidence with peers, and feel supported in their non‐academic and academic struggles. Although the program's main objective was to build participants' sense of belonging, the social support provided through the peer group also acted as a mechanism for increasing information‐related social capital. We recommend the implementation of similar non‐academic, supportive social spaces to increase the sense of belonging and overall persistence of low‐income STEM students. 
    more » « less
  2. IRE STEM Scholars program contributes to the national need for well-educated STEM professionals by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students. The IRE STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with a Bachelor of Science degree in engineering and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce; it is during this semester that students receive the S-STEM scholarship. During the last two years of their education, IRE students work in paid engineering co-ops, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project financially supports low-income students during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project provides personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and subjective wellbeing (or mental and physical health). This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? Currently in its second year, the project has supported 20 students, including 6 students on co-op. These six students have been interviewed on their sense of belonging in engineering during their co-op experiences, and have provided multiple survey data points describing IRE students’ experiences in co-op and overall sense of belonging. These IRE STEM Scholars program participant-specific data along with survey data documenting the co-op experiences of all IRE students describe how co-op experiences can be used to provide a financially responsible pathway to an engineering degree for low-income, high achieving students. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students. 
    more » « less
  3. This project will contribute to the national need for well-educated scientists, mathematicians, engineers, and technicians by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students who are pursuing Bachelor of Science degrees in engineering. First semester junior, primarily transfer, students at Iron Range Engineering will receive scholarships for one semester. The Iron Range Engineering (IRE) STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with an engineering degree and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce. During the last two years of their education, IRE students work in industry, earning an engineering intern salary, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project will provide access to a financially responsible engineering degree for low-income students by financially supporting them during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project will provide personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. By providing these supports, the IRE STEM Scholars project aims to prepare students to be competitive applicants for the engineering workforce with career development and engineering co-op experience. Because community colleges draw relatively representative proportions of students from a variety of backgrounds, this project has the potential to learn how transfer pathways and co-op education can support financially sustainable pathways to engineering degrees for a more diverse group of students and contribute to the development of a diverse, competitive engineering workforce. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates with demonstrated financial need. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and overall wellbeing (or mental and physical health). Student outcomes have previously been measured primarily through academic markers such as graduation rates and GPA. In addition to these outcomes, this project explores ways to better support overall student thriving. This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? In the first year of the IRE STEM Scholars Project, initial interview data describe scholars’ sense of belonging in engineering, prior to their first co-op experiences and survey data describe IRE students’ experiences in co-op and overall sense of belonging. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students. 
    more » « less
  4. This Innovative Practice paper describes the Local Research Experiences for Undergraduates (LREU) program that was established by the Computing Alliance of Hispanic-Serving Institutions (CAHSI) at Hispanic-serving institutions (HSIs) in 2021 to increase the number of students, particularly students from underrepresented populations, who enter graduate programs in computer science. Since its first offering in Spring 2022, the LREU program has involved 182 faculty and 253 students. The LREU program funds undergraduate research experiences at the students’ home institutions with an emphasis on first-generation students and those with financial needs. The motivation for the program is to address the low number of domestic students, particularly Hispanics and other minoritized populations, who seek and complete graduate degrees. Research shows that participation in research activities predicts college outcomes such as GPA, retention, and persistence. Even though these studies inform us of the importance of REU programs, many programmatic efforts are summer experiences and, while students may receive support, faculty mentors rarely receive coaching or professional development efforts. What distinguishes the LREU program is the focus on the deliberative development of students’ professional and research skills; faculty coaching on the Affinity Research Group model; and the learning community established to share experiences and practices and to learn from each other. Students, who are matched with faculty mentors based on their areas of interest, work with their mentor to co-create a research plan. Students keep a research journal in which they record what they have learned and identify areas for their growth and development as researchers. The LREU provides an opportunity for the LREU participants to cultivate a growth mindset through deliberate practice and reflection from personal, professional, social, and academic perspectives. The paper discusses the multi-institutional perspectives that help CAHSI understand the types of challenges faced in undergraduate research programs, how faculty mentors communicate and make decisions, and how mentors resolve challenges, allowing the research community to better understand students’ and faculty experiences. In addition, the paper reports on research and evaluation results that documented mentors’ growth in their knowledge of effective research mentoring practices and students’ learning gains in research and other skills. The paper also describes the impact of the learning community, e.g., how it supports developing strategies for interaction with and mentoring students from underrepresented populations. 
    more » « less
  5. The transfer pathway in engineering disciplines, especially for low-income students, is often seen as an opportunity to expand the science and engineering workforce, particularly when transferring from a two-year community college to a four-year institution. This study focused on low-income transfer students’ motivational factors that led them to choose and continue to pursue an engineering baccalaureate degree(s). This studied used Eccles's (1983) expectancy-value theory of motivation as the guiding theoretical framework to show the relationship between competence and value beliefs as the motivated actions towards earning an engineering degree. It relates competence to, “Can I earn an engineering degree?” and task value beliefs to, “Do I want to earn an engineering degree?” Twenty students (12 first-year and 8 second-year low-income engineering transfer students) were interviewed about their experiences in engineering. Additionally, these twenty students completed a survey collecting data on their demographics, recognition, social belongingness, performance, and value beliefs. A qualitative analysis showed that students mainly chose to pursue a baccalaureate degree in engineering due to the financial reward, family influences, faculty support, and early childhood interest. Furthermore, students’ motivation to continue to pursue an engineering degree was attributed to prestige, engineering experiences acquired, financial and academic support, faculty and peer support, and gain of engineering knowledge throughout their academic journey. Implications of the study were: a) a set of small samples of data was analyzed, and b) examination of students belonging to a specific cohort. This cohort was provided with financial and academic support to navigate through their studies. Future studies could consist of various topics. For example, a longitudinal research study is required to track students’ motivation and how it transitions over time. Also, a study that compares two-year community college students transferring to a four-year institution who received financial support by applying for it versus students that were provided with a full financial tuition package. Furthermore, a research study about low-income engineering transfer students who do not belong to a cohort and are not receiving financial support. Overall, the study intended to further explore low-income engineering transfer student’s experiences, in terms of motivation, which led them to choose and continue to pursue engineering. 
    more » « less