Several studies have highlighted the positive effects that active learning may have on student engagement and performance. However, the influence of active learning strategies is mediated by several factors, including the nature of the learning environment and the cognitive level of in-class tasks. These factors can affect different dimensions of student engagement such as the nature of social processing in student groups, how knowledge is used and elaborated upon by students during in-class tasks, and the amount of student participation in group activities. In this study involving four universities in the US, we explored the association between these different dimensions of student engagement and the cognitive level of assigned tasks in five distinct general chemistry learning environments where students were engaged in group activities in diverse ways. Our analysis revealed a significant association between task level and student engagement. Retrieval tasks often led to a significantly higher number of instances of no interaction between students and individualistic work, and a lower number of knowledge construction and collaborative episodes with full student participation. Analysis tasks, on the other hand, were significantly linked to more instances of knowledge construction and collaboration with full group participation. Tasks at the comprehension level were distinctive in their association with more instances of knowledge application and multiple types of social processing. The results of our study suggest that other factors such as the nature of the curriculum, task timing, and class setting may also affect student engagement during group work.
more »
« less
This content will become publicly available on October 22, 2024
Characterising Individual-Level Collaborative Learning Behaviours Using Ordered Network Analysis and Wearable Sensors
Wearable positioning sensors are enabling unprecedented opportunities to model students’ procedural and social behaviours during collaborative learning tasks in physical learning spaces. Emerging work in this area has mainly focused on modelling group-level interactions from low-level x-y positioning data. Yet, little work has utilised such data to automatically identify individual-level differences among students working in co-located groups in terms of procedural and social aspects such as task prioritisation and collaboration dynamics, respectively. To address this gap, this study characterised key differences among 124 students’ procedural and social behaviours according to their perceived stress, collaboration, and task satisfaction during a complex group task using wearable positioning sensors and ordered networked analysis. The results revealed that students who demonstrated more collaborative behaviours were associated with lower stress and higher collaboration satisfaction. Interestingly, students who worked individually on the primary and secondary learning tasks reported lower and higher task satisfaction, respectively. These findings can deepen our understanding of students’ individual-level behaviours and experiences while learning in groups.
more »
« less
- Award ID(s):
- 2201723
- NSF-PAR ID:
- 10539639
- Publisher / Repository:
- Springer, Cham
- Date Published:
- Edition / Version:
- 1
- Volume:
- 1
- Issue:
- 1
- ISSN:
- 1865-0929
- ISBN:
- 978-3-031-47014-1
- Page Range / eLocation ID:
- 66-80
- Subject(s) / Keyword(s):
- Collaborative Learning Learning Analytics Educational Data Mining Ordered Network Analysis Stress Satisfaction
- Format(s):
- Medium: X Size: 1011KB Other: pdf
- Size(s):
- 1011KB
- Location:
- Melbourne, VIC, Australia
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We model collaborative problem solving outcomes using data from 37 triads who completed a challenging computer programming task. Participants individually rated their group’s performance, communication, cooperation, and agreeableness after the session, which were aggregated to produce group-level measures of subjective outcomes. We scored teams on objective task outcomes and measured individual students’ learning outcomes with a posttest. Groups with similar personalities performed better on the task and had higher ratings of communication, cooperation, and agreeableness. Importantly, greater deviation in teammates’ perception of group performance and higher ratings of communication, cooperation, and agreeableness negatively predicted individual learning. We discuss findings from the perspective of group work norms and consider applications to intelligent systems that support collaborative problem solving.more » « less
-
Purpose In response to the evolving COVID-19 pandemic, many universities have transitioned to online instruction. With learning promising to be online, at least in part, for the near future, instructors may be thinking of providing online collaborative learning opportunities to their students who are increasingly isolated from their peers because of social distancing guidelines. This paper aims to provide design recommendations for online collaborative project-based learning exercises based on this research in a software engineering course at the university level. Design/methodology/approach Through joint work between learning scientists, course instructors and software engineering practitioners, instructional design best practices of alignment between the context of the learners, the learning objectives, the task and the assessment are actualized in the design of collaborative programming projects for supporting learning. The design, first segments a short real-time collaborative exercise into tasks, each with a problem-solving phase where students participate in collaborative programming, and a reflection phase for reflecting on what they learned in the task. Within these phases, a role-assignment paradigm scaffolds collaboration by assigning groups of four students to four complementary roles that rotate after each task. Findings By aligning each task with granular learning objectives, significant pre- to post-test learning from the exercise as well as each task is observed. Originality/value The roles used in the paradigm discourage divide-and-conquer tendencies often associated with collaborative projects. By requiring students to discuss conflicting ideas to arrive at a consensus implementation, their ideas are made explicit, thus providing opportunities for clarifying misconceptions through discussion and learning from the collaboration.more » « less
-
Numerous computer-based collaborative learning environments have been developed to support collaborative problem-solving. Yet, understanding the complexity and dynamic nature of the collaboration process remains a challenge. This is particularly true in open-ended immersive learning environments, where students navigate both physical and virtual spaces, pursuing diverse paths to solve problems. In response, we aimed to unpack these complex collaborative learning processes by investigating 16 groups of college students (n = 77) who utilized an immersive astronomy simulation in their introductory astronomy course. Our specific focus is on joint attention as a multi-level indicator to index collaboration. To examine the interplay between joint attention and other multimodal traces (conceptual discussions and gestures) in students’ interactions with peers and the simulation, we employed a multi-granular approach. This approach encompasses macro-level correlations, meso-level network trends, and micro-level qualitative insights from vignettes to capture nuances at different levels. Distinct multimodal engagement patterns emerged between low- and high-achieving groups, evolving over time across a series of tasks. Our findings contribute to the understanding of the notion of timely joint attention and emphasize the importance of individual exploration during the early stages of collaborative problem-solving, demonstrating its contribution to productive knowledge coconstruction. This research overall provides valuable insights into the complexities of collaboration dynamics within and beyond digital space. The empirical evidence we present in our study lays a strong foundation for developing instructional designs aimed at fostering productive collaboration in immersive learning environments.more » « less
-
Grieff, S. (Ed.)Recently there has been increased development of curriculum and tools that integrate computing (C) into Science, Technology, Engineering, and Math (STEM) learning environments. These environments serve as a catalyst for authentic collaborative problem-solving (CPS) and help students synergistically learn STEM+C content. In this work, we analyzed students’ collaborative problem-solving behaviors as they worked in pairs to construct computational models in kinematics. We leveraged social measures, such as equity and turn-taking, along with a domain-specific measure that quantifies the synergistic interleaving of science and computing concepts in the students’ dialogue to gain a deeper understanding of the relationship between students’ collaborative behaviors and their ability to complete a STEM+C computational modeling task. Our results extend past findings identifying the importance of synergistic dialogue and suggest that while equitable discourse is important for overall task success, fluctuations in equity and turn-taking at the segment level may not have an impact on segment-level task performance. To better understand students’ segment-level behaviors, we identified and characterized groups’ planning, enacting, and reflection behaviors along with monitoring processes they employed to check their progress as they constructed their models. Leveraging Markov Chain (MC) analysis, we identified differences in high- and low-performing groups’ transitions between these phases of students’ activities. We then compared the synergistic, turn-taking, and equity measures for these groups for each one of the MC model states to gain a deeper understanding of how these collaboration behaviors relate to their computational modeling performance. We believe that characterizing differences in collaborative problem-solving behaviors allows us to gain a better understanding of the difficulties students face as they work on their computational modeling tasks.more » « less