skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Submarine groundwater discharge drives both direct and indirect effects on organismal and community metabolism on coral reefs
Coral reefs experience numerous environmental gradients affecting organismal physiology and species biodiversity, which ultimately impact community metabolism. This study shows that submarine groundwater discharge (SGD), a common natural environmental gradient in coastal ecosystems associated with decreasing temperatures, salinity and pH with increasing nutrients, has both direct and indirect effects on coral reef community metabolism by altering individual growth rates and community composition. Our data revealed that SGD exposure hindered the growth of two algae,Halimeda opuntiaandValonia fastigiata,by 67 and 200%, respectively, and one coral,Porites rus,by 20%. Community metabolic rates showed altered community production, respiration and calcification between naturally high and low exposure areas mostly due to differences in community identity (i.e. species composition), rather than a direct effect of SGD on physiology. Production and calcification were 1.5 and 6.5 times lower in assemblages representing high SGD communities regardless of environment. However, the compounding effect of community identity and SGD exposure on respiration resulted in the low SGD community exhibiting the highest respiration rates under higher SGD exposure. By demonstrating SGD’s role in altering community composition and metabolism, this research highlights the critical need to consider compounding environmental gradients (i.e. nutrients, salinity and temperature) in the broader context of ecosystem functions.  more » « less
Award ID(s):
1924281 2224354
PAR ID:
10568276
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of the Royal Society: B
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
292
Issue:
2039
ISSN:
1471-2954
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Submarine groundwater discharge (SGD) influences near-shore coral reef ecosystems worldwide. SGD biogeochemistry is distinct, typically with higher nutrients, lower pH, cooler temperature and lower salinity than receiving waters. SGD can also be a conduit for anthropogenic nutrients and other pollutants. Using Bayesian structural equation modelling, we investigate pathways and feedbacks by which SGD influences coral reef ecosystem metabolism at two Hawai'i sites with distinct aquifer chemistry. The thermal and biogeochemical environment created by SGD changed net ecosystem production (NEP) and net ecosystem calcification (NEC). NEP showed a nonlinear relationship with SGD-enhanced nutrients: high fluxes of moderately enriched SGD (Wailupe low tide) and low fluxes of highly enriched SGD (Kūpikipiki'ō high tide) increased NEP, but high fluxes of highly enriched SGD (Kūpikipiki'ō low tide) decreased NEP, indicating a shift toward microbial respiration. pH fluctuated with NEP, driving changes in the net growth of calcifiers (NEC). SGD enhances biological feedbacks: changes in SGD from land use and climate change will have consequences for calcification of coral reef communities, and thereby shoreline protection. 
    more » « less
  2. The interplay between ocean circulation and coral metabolism creates highly variable biogeochemical conditions in space and time across tropical coral reefs. Yet, relatively little is known quantitatively about the spatiotemporal structure of these variations. To address this gap, we use the Coupled Ocean Atmosphere Wave and Sediment Transport (COAWST) model, to which we added the Biogeochemical Elemental Cycling (BEC) model computing the biogeochemical processes in the water column, and a coral polyp physiology module that interactively simulates coral photosynthesis, respiration and calcification. The coupled model, configured for the north-shore of Moorea Island, successfully simulates the observed (i) circulation across the wave regimes, (ii) magnitude of the metabolic rates, and (iii) large gradients in biogeochemical conditions across the reef. Owing to the interaction between coral net community production (NCP) and coral calcification, the model simulates distinct day versus night gradients, especially for pH and the saturation state of seawater with respect to aragonite (Ωα). The strength of the gradients depends non-linearly on the wave regime and the resulting residence time of water over the reef with the low wave regime creating conditions that are considered as “extremely marginal” for corals. With the average water parcel passing more than twice over the reef, recirculation contributes further to the accumulation of these metabolic signals. We find diverging temporal and spatial relationships between total alkalinity (TA) and dissolved inorganic carbon (DIC) (≈ 0.16 for the temporal vs. ≈ 1.8 for the spatial relationship), indicating the importance of scale of analysis for this metric. Distinct biogeochemical niches emerge from the simulated variability, i.e., regions where the mean and variance of the conditions are considerably different from each other. Such biogeochemical niches might cause large differences in the exposure of individual corals to the stresses associated with e.g., ocean acidification. At the same time, corals living in the different biogeochemical niches might have adapted to the differing conditions, making the reef, perhaps, more resilient to change. Thus, a better understanding of the mosaic of conditions in a coral reef might be useful to assess the health of a coral reef and to develop improved management strategies. 
    more » « less
  3. Abstract Climate change is accelerating sea‐level rise and saltwater intrusion in coastal regions world‐wide and interacting with large‐scale changes in species composition in coastal wetlands. Quantifying macrophyte litter breakdown along freshwater‐to‐marine coastal gradients is needed to predict how carbon stores will respond to shifts in both macrophyte communities and water chemistry under changing environmental conditions.To test the interactive drivers of changing species identity and water chemistry, we performed a reciprocal transplant of four macrophyte litter species in seven sites along freshwater‐to‐marine gradients in the Florida Coastal Everglades. We measured surface water chemistry (dissolved organic carbon, total nitrogen and total phosphorus), litter chemistry (% nitrogen, % phosphorus, change in N:P molar ratio, % cellulose and % lignin as proxies for recalcitrance) and litter breakdown rates (k/degree‐day).Direct effects of salinity and surface water nutrients were the strongest drivers ofk, but unexpectedly, litter chemistry did not correlate with litterk. However, salinity strongly correlated with changes in litter chemistry, whereby litter incubated in brackish and marine wetlands was more labile and gained more phosphorus compared with litter in freshwater marshes. Our results suggest that litterkin coastal wetlands is explained by species‐specific interactions among water and litter chemistries. Water nutrient availability was an important predictor of breakdown rates across species, but breakdown rates were only explained by the carbon recalcitrance of litter in the species with the slowest breakdown (Cladium jamaicense), indicating the importance of carbon structure, and species identity on breakdown rates.Synthesis. In oligotrophic ecosystems, nutrients are often the primary driver of organic matter breakdown. However, we found that variation in macrophyte breakdown rates in oligotrophic coastal wetlands was also explained by salinity and associated seawater chemistry, emphasising the need to understand how saltwater intrusion will alter organic matter processing in wetlands. Our results suggest that marine subsidies associated with sea‐level rise have the potential to accelerate leaf litter breakdown. The increase in breakdown rates could either be buffered or increase further as sea‐level rise also shifts macrophyte community composition to more or less recalcitrant species. 
    more » « less
  4. Coral reefs experience numerous natural and anthropogenic environmental gradients that alter biophysical conditions and affect biodiversity. While many studies have focused on drivers of reef biodiversity using traditional diversity metrics (e.g., species richness, diversity, evenness), less is known about how environmental variability may influence functional diversity. In this study, we tested the impact of submarine groundwater discharge (SGD) on taxonomic and functional diversity metrics in Mo‘orea, French Polynesia. SGD is the expulsion of terrestrial fresh or recirculated seawater into marine environments and is associated with reduced temperatures, pH, and salinity and elevated nutrient levels. Using a regression approach along the SGD gradient, we found that taxon and functional-entity richness displayed unimodal relationships to SGD parameters, primarily nitrate + nitrite and phosphate variability, with peak richness at moderate SGD for stony coral and the full benthic community. Macroalgae showed this unimodal pattern for functional-entity but not taxonomic richness. Functional community composition (presence and abundance of functional entities) increased along the gradient, while taxonomic composition showed a nonlinear relationship to SGD-related parameters. SGD is a common feature of many coastal ecosystems globally and therefore may be more important to structuring benthic functional diversity than previously thought. Further, studying community shifts through a functional-trait lens may provide important insights into the roles of community functions on ecosystem processes and stability, leading to improved management strategies. 
    more » « less
  5. Caroselli, Erik (Ed.)
    The North Atlantic Oscillation (NAO) has been hypothesized to drive interannual variability in Bermudan coral extension rates and reef-scale calcification through the provisioning of nutritional pulses associated with negative NAO winters. However, the direct influence of the NAO on Bermudan coral calcification rates remains to be determined and may vary between species and reef sites owing to implicit differences in coral life history strategies and environmental gradients across the Bermuda reef platform. In this study, we investigated the connection between negative NAO winters and Bermudan Diploria labyrinthiformis , Pseudodiploria strigosa , and Orbicella franksi coral calcification rates across rim reef, lagoon, and nearshore reef sites. Linear mixed effects modeling detected an inverse correlation between D . labyrinthiformis calcification rates and the winter NAO index, with higher rates associated with increasingly negative NAO winters. Conversely, there were no detectable correlations between P . strigosa or O . franksi calcification rates and the winter NAO index suggesting that coral calcification responses associated with negative NAO winters could be species-specific. The correlation between coral calcification rates and winter NAO index was significantly more negative at the outer rim of the reef (Hog Reef) compared to a nearshore reef site (Whalebone Bay), possibly indicating differential influence of the NAO as a function of the distance from the reef edge. Furthermore, a negative calcification anomaly was observed in 100% of D . labyrinthiformis cores in association with the 1988 coral bleaching event with a subsequent positive calcification anomaly in 1989 indicating a post-bleaching recovery in calcification rates. These results highlight the importance of assessing variable interannual coral calcification responses between species and across inshore-offshore gradients to interannual atmospheric modes such as the NAO, thermal stress events, and potential interactions between ocean warming and availability of coral nutrition to improve projections for future coral calcification rates under climate change. 
    more » « less