skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Title: Submarine groundwater discharge alters coral reef ecosystem metabolism
Submarine groundwater discharge (SGD) influences near-shore coral reef ecosystems worldwide. SGD biogeochemistry is distinct, typically with higher nutrients, lower pH, cooler temperature and lower salinity than receiving waters. SGD can also be a conduit for anthropogenic nutrients and other pollutants. Using Bayesian structural equation modelling, we investigate pathways and feedbacks by which SGD influences coral reef ecosystem metabolism at two Hawai'i sites with distinct aquifer chemistry. The thermal and biogeochemical environment created by SGD changed net ecosystem production (NEP) and net ecosystem calcification (NEC). NEP showed a nonlinear relationship with SGD-enhanced nutrients: high fluxes of moderately enriched SGD (Wailupe low tide) and low fluxes of highly enriched SGD (Kūpikipiki'ō high tide) increased NEP, but high fluxes of highly enriched SGD (Kūpikipiki'ō low tide) decreased NEP, indicating a shift toward microbial respiration. pH fluctuated with NEP, driving changes in the net growth of calcifiers (NEC). SGD enhances biological feedbacks: changes in SGD from land use and climate change will have consequences for calcification of coral reef communities, and thereby shoreline protection.  more » « less
Award ID(s):
1924281 1923877
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this study, fore reef coral communities were exposed to high pCO2 for a year to explore the relationship between net accretion (Gnet) and community structure (planar area growth). Coral reef communities simulating the fore reef at 17-m depth on Mo’orea, French Polynesia, were assembled in three outdoor flumes (each 500 l) that were maintained at ambient (396 µatm), 782 µatm, and 1434 µatm pCO2, supplied with seawater at 300 l h−1, and exposed to light simulating 17-m depth. The communities were constructed using corals from the fore reef, and the responses of massive Porites spp., Acropora spp., and Pocillopora verrucosa were assessed through monthly measurements of Gnet and planar area. High pCO2 depressed Gnet but did not affect colony area by taxon, although the areas of Acropora spp. and P. verrucosa summed to cause multivariate community structure to differ among treatments. These results suggest that skeletal plasticity modulates the effects of reduced Gnet at high pCO2 on planar growth, at least over a year. The low sensitivity of the planar growth of fore reef corals to the effects of ocean acidification (OA) on net calcification supports the counterintuitive conclusion that coral community structure may not be strongly affected by OA. 
    more » « less
  2. The acid–base relevant molecules carbon dioxide (CO2), protons (H+), and bicarbonate (HCO3−) are substrates and end products of some of the most essential physiological functions including aerobic and anaerobic respiration, ATP hydrolysis, photosynthesis, and calcification. The structure and function of many enzymes and other macromolecules are highly sensitive to changes in pH, and thus maintaining acid–base homeostasis in the face of metabolic and environmental disturbances is essential for proper cellular function. On the other hand, CO2, H+, and HCO3− have regulatory effects on various proteins and processes, both directly through allosteric modulation and indirectly through signal transduction pathways. Life in aquatic environments presents organisms with distinct acid–base challenges that are not found in terrestrial environments. These include a relatively high CO2 relative to O2 solubility that prevents internal CO2/HCO3 − accumulation to buffer pH, a lower O2 content that may favor anaerobic metabolism, and variable environmental CO2, pH and O2 levels that require dynamic adjustments in acid–base homeostatic mechanisms. Additionally, some aquatic animals purposely create acidic or alkaline microenvironments that drive specialized physiological functions. For example, acidifying mechanisms can enhance O2 delivery by red blood cells, lead to ammonia trapping for excretion or buoyancy purposes, or lead to CO2 accumulation to promote photosynthesis by endosymbiotic algae. On the other hand, alkalinizing mechanisms can serve to promote calcium carbonate skeletal formation. This nonexhaustive review summarizes some of the distinct acid–base homeostatic mechanisms that have evolved in aquatic organisms to meet the particular challenges of this environment. 
    more » « less
  3. Abstract Background Management actions that address local-scale stressors on coral reefs can rapidly improve water quality and reef ecosystem condition. In response to reef managers who need actionable thresholds for coastal runoff and dredging, we conducted a systematic review and meta-analysis of experimental studies that explore the effects of sediment on corals. We identified exposure levels that ‘adversely’ affect corals while accounting for sediment bearing (deposited vs. suspended), coral life-history stage, and species, thus providing empirically based estimates of stressor thresholds on vulnerable coral reefs. Methods We searched online databases and grey literature to obtain a list of potential studies, assess their eligibility, and critically appraise them for validity and risk of bias. Data were extracted from eligible studies and grouped by sediment bearing and coral response to identify thresholds in terms of the lowest exposure levels that induced an adverse physiological and/or lethal effect. Meta-regression estimated the dose–response relationship between exposure level and the magnitude of a coral’s response, with random-effects structures to estimate the proportion of variance explained by factors such as study and coral species. Review findings After critical appraisal of over 15,000 records, our systematic review of corals’ responses to sediment identified 86 studies to be included in meta-analyses (45 studies for deposited sediment and 42 studies for suspended sediment). The lowest sediment exposure levels that caused adverse effects in corals were well below the levels previously described as ‘normal’ on reefs: for deposited sediment, adverse effects occurred as low as 1 mg/cm 2 /day for larvae (limited settlement rates) and 4.9 mg/cm 2 /day for adults (tissue mortality); for suspended sediment, adverse effects occurred as low as 10 mg/L for juveniles (reduced growth rates) and 3.2 mg/L for adults (bleaching and tissue mortality). Corals take at least 10 times longer to experience tissue mortality from exposure to suspended sediment than to comparable concentrations of deposited sediment, though physiological changes manifest 10 times faster in response to suspended sediment than to deposited sediment. Threshold estimates derived from continuous response variables (magnitude of adverse effect) largely matched the lowest-observed adverse-effect levels from a summary of studies, or otherwise helped us to identify research gaps that should be addressed to better quantify the dose–response relationship between sediment exposure and coral health. Conclusions We compiled a global dataset that spans three oceans, over 140 coral species, decades of research, and a range of field- and lab-based approaches. Our review and meta-analysis inform the no-observed and lowest-observed adverse-effect levels (NOAEL, LOAEL) that are used in management consultations by U.S. federal agencies. In the absence of more location- or species-specific data to inform decisions, our results provide the best available information to protect vulnerable reef-building corals from sediment stress. Based on gaps and limitations identified by our review, we make recommendations to improve future studies and recommend future synthesis to disentangle the potentially synergistic effects of multiple coral-reef stressors. 
    more » « less
  4. Abstract Mesophotic reefs (30‐150 m) have been proposed as potential refugia that facilitate the recovery of degraded shallow reefs following acute disturbances such as coral bleaching and disease. However, because of the technical difficulty of collecting samples, the connectivity of adjacent mesophotic reefs is relatively unknown compared with shallower counterparts. We used genotyping by sequencing to assess fine‐scale genetic structure of Montastraea cavernosa at two sites at Pulley Ridge, a mesophotic coral reef ecosystem in the Gulf of Mexico, and downstream sites along the Florida Reef Tract. We found differentiation between reefs at Pulley Ridge (~68 m) and corals at downstream upper mesophotic depths in the Dry Tortugas (28–36 m) and shallow reefs in the northern Florida Keys (Key Biscayne, ~5 m). The spatial endpoints of our study were distinct, with the Dry Tortugas as a genetic intermediate. Most striking were differences in population structure among northern and southern sites at Pulley Ridge that were separated by just 12km. Unique patterns of clonality and outlier loci allele frequency support these sites as different populations and suggest that the long‐distance horizontal connectivity typical of shallow‐water corals may not be typical for mesophotic systems in Florida and the Gulf of Mexico. We hypothesize that this may be due to the spawning of buoyant gametes, which commits propagules to the surface, resulting in greater dispersal and lower connectivity than typically found between nearby shallow sites. Differences in population structure over small spatial scales suggest that demographic constraints and/or environmental disturbances may be more variable in space and time on mesophotic reefs compared with their shallow‐water counterparts. 
    more » « less
  5. A wide range of research shows that nutrient availability strongly influences terrestrial carbon (C) cycling and shapes ecosystem responses to environmental changes and hence terrestrial feedbacks to climate. Nonetheless, our understanding of nutrient controls remains far from complete and poorly quantified, at least partly due to a lack of informative, comparable, and accessible datasets at regional-to-global scales. A growing research infrastructure of multi-site networks are providing valuable data on C fluxes and stocks and are monitoring their responses to global environmental change and measuring responses to experimental treatments. These networks thus provide an opportunity for improving our understanding of C-nutrient cycle interactions and our ability to model them. However, coherent information on how nutrient cycling interacts with observed C cycle patterns is still generally lacking. Here, we argue that complementing available C-cycle measurements from monitoring and experimental sites with data characterizing nutrient availability will greatly enhance their power and will improve our capacity to forecast future trajectories of terrestrial C cycling and climate. Therefore, we propose a set of complementary measurements that are relatively easy to conduct routinely at any site or experiment and that, in combination with C cycle observations, can provide a robust characterization of the effects of nutrient availability across sites. In addition, we discuss the power of different observable variables for informing the formulation of models and constraining their predictions. Most widely available measurements of nutrient availability often do not align well with current modelling needs. This highlights the importance to foster the interaction between the empirical and modelling communities for setting future research priorities. 
    more » « less