skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Flow rates alter the outcome of coral bleaching and growth experiments
It is important to consider flow rate explicitly in coral growth and bleaching studies across multiple species with differing life histories to guide coral conservation, management and captive culture. We quantified growth rates and coral bleaching responses to thermal stress (approx. 18 DHW) in flow-through aquaria with various current velocities to test whether flow conditions alter experimental outcomes. Across natural flow rates (< 1 to over 50 cm/sec), Montipora capitata, Pocillopora acuta, and Pocillopora meandrina showed increased growth and bleaching recovery at intermediate flow rates. Growth rates for all species increased from no flow to intermediate (50–100 turnovers-per-hour, ~ 10–30 cm/s), but then decreased at highest flow (> 190 tph, > 50 cm/s) although this trend was not significant for P. meandrina. The flow treatment with highest recovery from temperature stress differed across species, ranging from 4 tph in the flow-loving P. meandrina to 210 tph in the lagoonal M. capitata, indicating that natural flow regime alone is not predictive. Fragments from the same individual (e.g., P. acuta colony 8) held under identical thermal conditions continue bleaching and die under one flow regime (4 tph), whereas they recover from bleaching (30 tph) or grow fastest (105 tph) under different flow treatments. Flow is rarely reported in the literature, but uncontrolled flow effects may help to explain some of the variation in coral bleaching results reported across the literature. Significant differences among individual colonies, and colony-by-flow interactions, preclude generalizations beyond that flow rates can alter the outcome of both coral growth and bleaching experiments.  more » « less
Award ID(s):
2048457
PAR ID:
10568329
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Discover Oceans
Volume:
1
Issue:
1
ISSN:
2948-1562
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Understanding the response of the coral holobiont to environmental change is crucial to inform conservation efforts. The most pressing problem is “coral bleaching,” usually precipitated by prolonged thermal stress. We used untargeted, polar metabolite profiling to investigate the physiological response of the coral species Montipora capitata and Pocillopora acuta to heat stress. Our goal was to identify diagnostic markers present early in the bleaching response. From the untargeted UHPLC-MS data, a variety of co-regulated dipeptides were found that have the highest differential accumulation in both species. The structures of four dipeptides were determined and showed differential accumulation in symbiotic and aposymbiotic (alga-free) populations of the sea anemone Aiptasia ( Exaiptasia pallida ), suggesting the deep evolutionary origins of these dipeptides and their involvement in symbiosis. These and other metabolites may be used as diagnostic markers for thermal stress in wild coral. 
    more » « less
  2. null (Ed.)
    Understanding the response of the coral holobiont to environmental change is crucial to inform conservation efforts. The most pressing problem is “coral bleaching,” usually precipitated by prolonged thermal stress. We used untargeted, polar metabolite profiling to investigate the physiological response of the coral species Montipora capitata and Pocillopora acuta to heat stress. Our goal was to identify diagnostic markers present early in the bleaching response. From the untargeted UHPLC-MS data, a variety of co-regulated dipeptides were found that have the highest differential accumulation in both species. The structures of four dipeptides were determined and showed differential accumulation in symbiotic and aposymbiotic (alga-free) populations of the sea anemone Aiptasia (Exaiptasia pallida), suggesting the deep evolutionary origins of these dipeptides and their involvement in symbiosis. These and other metabolites may be used as diagnostic markers for thermal stress in wild coral. 
    more » « less
  3. Abstract Background Coral reefs house about 25% of marine biodiversity and are critical for the livelihood of many communities by providing food, tourism revenue, and protection from wave surge. These magnificent ecosystems are under existential threat from anthropogenic climate change. Whereas extensive ecological and physiological studies have addressed coral response to environmental stress, high-quality reference genome data are lacking for many of these species. The latter issue hinders efforts to understand the genetic basis of stress resistance and to design informed coral conservation strategies. Results We report genome assemblies from 4 key Hawaiian coral species, Montipora capitata, Pocillopora acuta, Pocillopora meandrina, and Porites compressa. These species, or members of these genera, are distributed worldwide and therefore of broad scientific and ecological importance. For M. capitata, an initial assembly was generated from short-read Illumina and long-read PacBio data, which was then scaffolded into 14 putative chromosomes using Omni-C sequencing. For P. acuta, P. meandrina, and P. compressa, high-quality assemblies were generated using short-read Illumina and long-read PacBio data. The P. acuta assembly is from a triploid individual, making it the first reference genome of a nondiploid coral animal. Conclusions These assemblies are significant improvements over available data and provide invaluable resources for supporting multiomics studies into coral biology, not just in Hawaiʻi but also in other regions, where related species exist. The P. acuta assembly provides a platform for studying polyploidy in corals and its role in genome evolution and stress adaptation in these organisms. 
    more » « less
  4. Abstract Transcriptome data are frequently used to investigate coral bleaching; however, the factors controlling gene expression in natural populations of these species are poorly understood. We studied two corals,Montipora capitataandPocillopora acuta, that inhabit the sheltered Kāne'ohe Bay, Hawai'i.M. capitatacolonies in the bay are outbreeding diploids, whereasP. acutais a mixture of clonal diploids and triploids. Populations were sampled from six reefs and subjected to either control (no stress), thermal stress, pH stress, or combined pH and thermal stress treatments. RNA‐seq data were generated to test two competing hypotheses: (1) gene expression is largely independent of genotype, reflecting a shared treatment‐driven response (TDE) or, (2) genotype dominates gene expression, regardless of treatment (GDE). Our results strongly support the GDE model, even under severe stress. We suggest that post‐transcriptional processes (e.g., control of translation, protein turnover) modify the signal from the transcriptome, and may underlie the observed differences in coral bleaching sensitivity via the downstream proteome and metabolome. 
    more » « less
  5. Coral bleaching and mortality can show significant spatial and taxonomic heterogeneity at local scales, highlighting the need to understand the fine-scale drivers and impacts of thermal stress. In this study, we used structure-from-motion photogrammetry to track coral bleaching, mortality, and changes in community composition during the 2019 marine heatwave in Kāneʻohe Bay, Hawaiʻi. We surveyed 30 shallow reef patches every 3 weeks for the duration of the bleaching event (August-December) and one year after, resulting in a total of 210 large-area, high-resolution photomosaics that enabled us to follow the fate of thousands of coral colonies through time. We also measured environmental variables such as temperature, sedimentation, depth, and wave velocity at each of these sites, and extracted estimates of habitat complexity (rugosity R and fractal dimension D) from digital elevation models to better understand their effects on patterns of bleaching and mortality. We found that up to 80% of corals experienced moderate to severe bleaching in this period, with peak bleaching occurring in October when heat stress (Degree Heating Weeks) reached its maximum. Mortality continued to accumulate as bleaching levels dropped, driving large declines in more heat-susceptible species (77% loss of Pocillopora cover) and moderate declines in heat-tolerant species (19% and 23% for Porites compressa and Montipora capitata , respectively). Declines in live coral were accompanied by a rapid increase in algal cover across the survey sites. Spatial differences in bleaching were significantly linked to habitat complexity and coral species composition, with reefs that were dominated by Pocillopora experiencing the most severe bleaching. Mortality was also influenced by species composition, fractal dimension, and site-level differences in thermal stress. Our results show that spatial heterogeneity in the impacts of bleaching are driven by a mix of environmental variation, habitat complexity, and differences in assemblage composition. 
    more » « less