skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the hardness of learning under symmetries
We study the problem of learning equivariant neural networks via gradient descent. The incorporation of known symmetries ("equivariance") into neural nets has empirically improved the performance of learning pipelines, in domains ranging from biology to computer vision. However, a rich yet separate line of learning theoretic research has demonstrated that actually learning shallow, fully-connected (i.e. non-symmetric) networks has exponential complexity in the correlational statistical query (CSQ) model, a framework encompassing gradient descent. In this work, we ask: are known problem symmetries sufficient to alleviate the fundamental hardness of learning neural nets with gradient descent? We answer this question in the negative. In particular, we give lower bounds for shallow graph neural networks, convolutional networks, invariant polynomials, and frame-averaged networks for permutation subgroups, which all scale either superpolynomially or exponentially in the relevant input dimension. Therefore, in spite of the significant inductive bias imparted via symmetry, actually learning the complete classes of functions represented by equivariant neural networks via gradient descent remains hard.  more » « less
Award ID(s):
2134108
PAR ID:
10568528
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
International Conference on Learning Representations (ICLR), 2024
Date Published:
Format(s):
Medium: X
Location:
Vienna
Sponsoring Org:
National Science Foundation
More Like this
  1. Loh, Po-ling; Raginsky, Maxim (Ed.)
    Significant theoretical work has established that in specific regimes, neural networks trained by gradient descent behave like kernel methods. However, in practice, it is known that neural networks strongly outperform their associated kernels. In this work, we explain this gap by demonstrating that there is a large class of functions which cannot be efficiently learned by kernel methods but can be easily learned with gradient descent on a two layer neural network outside the kernel regime by learning representations that are relevant to the target task. We also demonstrate that these representations allow for efficient transfer learning, which is impossible in the kernel regime. Specifically, we consider the problem of learning polynomials which depend on only a few relevant directions, i.e. of the form f⋆(x)=g(Ux) where U:\Rd→\Rr with d≫r. When the degree of f⋆ is p, it is known that n≍dp samples are necessary to learn f⋆ in the kernel regime. Our primary result is that gradient descent learns a representation of the data which depends only on the directions relevant to f⋆. This results in an improved sample complexity of n≍d2 and enables transfer learning with sample complexity independent of d. 
    more » « less
  2. Significant theoretical work has established that in specific regimes, neural networks trained by gradient descent behave like kernel methods. However, in practice, it is known that neural networks strongly outperform their associated kernels. In this work, we explain this gap by demonstrating that there is a large class of functions which cannot be efficiently learned by kernel methods but can be easily learned with gradient descent on a two layer neural network outside the kernel regime by learning representations that are relevant to the target task. We also demonstrate that these representations allow for efficient transfer learning, which is impossible in the kernel regime. Specifically, we consider the problem of learning polynomials which depend on only a few relevant directions, i.e. of the form $f(x)=g(Ux)$ where $$U: \R^d \to \R^r$$ with $d≫r$. When the degree of f⋆ is p, it is known that n≍dp samples are necessary to learn f⋆ in the kernel regime. Our primary result is that gradient descent learns a representation of the data which depends only on the directions relevant to f. This results in an improved sample complexity of n≍d2r+drp. Furthermore, in a transfer learning setup where the data distributions in the source and target domain share the same representation U but have different polynomial heads we show that a popular heuristic for transfer learning has a target sample complexity independent of d. 
    more » « less
  3. We consider non-convex training of shallow neural networks and introduce a convex relaxation approach with theoretical guarantees. For the single neuron case, we prove that the relaxation preserves the location of the global minimum under a planted model assumption. Therefore, a globally optimal solution can be efficiently found via a gradient method. We show that gradient descent applied on the relaxation always outperforms gradient descent on the original non-convex loss with no additional computational cost. We then characterize this relaxation as a regularizer and further introduce extensions to multineuron single hidden layer networks. 
    more » « less
  4. null (Ed.)
    Designing an incentive compatible auction that maximizes expected revenue is a central problem in Auction Design. Theoretical approaches to the problem have hit some limits in the past decades and analytical solutions are known for only a few simple settings. Computational approaches to the problem through the use of LPs have their own set of limitations. Building on the success of deep learning, a new approach was recently proposed by Duetting et al. (2019) in which the auction is modeled by a feed-forward neural network and the design problem is framed as a learning problem. The neural architectures used in that work are general purpose and do not take advantage of any of the symmetries the problem could present, such as permutation equivariance. In this work, we consider auction design problems that have permutation-equivariant symmetry and construct a neural architecture that is capable of perfectly recovering the permutation- equivariant optimal mechanism, which we show is not possible with the previous architecture. We demonstrate that permutation-equivariant architectures are not only capable of recovering previous results, they also have better generalization properties. 
    more » « less
  5. Sparsification of neural networks is one of the effective complexity reduction methods to improve efficiency and generalizability. We consider the problem of learning a one hidden layer convolutional neural network with ReLU activation function via gradient descent under sparsity promoting penalties. It is known that when the input data is Gaussian distributed, no-overlap networks (without penalties) in regression problems with ground truth can be learned in polynomial time at high probability. We propose a relaxed variable splitting method integrating thresholding and gradient descent to overcome the non-smoothness in the loss function. The sparsity in network weight is realized during the optimization (training) process. We prove that under L1, L0, and transformed-L1 penalties, no-overlap networks can be learned with high probability, and the iterative weights converge to a global limit which is a transformation of the true weight under a novel thresholding operation. Numerical experiments confirm theoretical findings, and compare the accuracy and sparsity trade-off among the penalties. 
    more » « less