Natural gas distribution networks are part of a nation’s critical infrastructure, ensuring gas delivery to households and industries (e.g., power plants) with the correct chemical composition and the right conditions of pressure and temperature. Gas distribution is monitored and controlled by a Supervisory Control and Data Acquisition (SCADA) network, which provides centralized monitoring and control over the physical process.In this paper, we conduct the first openly available network measurement study of the SCADA network of an operational large-scale natural gas distribution network. With a total of 154 remote substations communicating through the SCADA system with a Control Room and over 98 days of observation, this is, to the best of our knowledge, the most extensive dataset of this kind analyzed to date.By combining the information obtained from engineering and IEC 104 network traffic, we reconstruct the gas distribution system’s layout, including the type and purpose of the substations and the physical properties of the gas that enters the SCADA system. Our analysis shows that it is possible to extract this information, essential for security monitoring, purely from the raw network traffic and without background knowledge provided by the control system engineers. We also note that configuration changes in SCADA environments, although probably less frequent than in IT environments, are not as rare and exceptional as the research community assumed.
more »
« less
From Power to Water: Dissecting SCADA Networks Across Different Critical Infrastructures
In recent years, there has been an increasing need to understand the SCADA networks that oversee our essential infrastructures. While previous studies have focused on networks in a single sector, few have taken a comparative approach across multiple critical infrastructures. This paper dissects operational SCADA networks of three essential services: power grids, gas distribution, and water treatment systems. Our analysis reveals some distinct and shared behaviors of these networks, shedding light on their operation and network configuration. Our findings challenge some of the previous perceptions about the uniformity of SCADA networks and emphasize the need for specialized approaches tailored to each critical infrastructure. With this research, we pave the way for better network characterization for cybersecurity measures and more robust designs in intrusion detection systems.
more »
« less
- Award ID(s):
- 1929410
- PAR ID:
- 10568584
- Publisher / Repository:
- Passive and Active Measurement
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)With the rise of malware targeting industrial control systems, researchers need more tools to develop a better understanding of the networks under attack, the potential behavior of malware, and design possible defenses. One of the most important protocols used in practice today is IEC 104, which is used to monitor and control the Power Grid of several countries, as well as to monitor and control other critical infrastructures such as gas, oil, and water systems. In this paper, we present our preliminary results in implementing the IEC 104 industrial protocol standard in Python and integrate it into a network emulation tool supported by Mininet.more » « less
-
Industrial control systems (ICS) are systems used in critical infrastructures for supervisory control, data acquisition, and industrial automation. ICS systems have complex, component-based architectures with many different hardware, software, and human factors interacting in real time. Despite the importance of security concerns in industrial control systems, there has not been a comprehensive study that examined common security architectural weaknesses in this domain. Therefore, this paper presents the first in-depth analysis of 988 vulnerability advisory reports for Industrial Control Systems developed by 277 vendors. We performed a detailed analysis of the vulnerability reports to measure which components of ICS have been affected the most by known vulnerabilities, which security tactics were affected most often in ICS and what are the common architectural security weaknesses in these systems. Our key findings were: (1) Human-Machine Interfaces, SCADA configurations, and PLCs were the most affected components, (2) 62.86% of vulnerability disclosures in ICS had an architectural root cause, (3) the most common architectural weaknesses were “Improper Input Validation”, followed by “Im-proper Neutralization of Input During Web Page Generation” and “Improper Authentication”, and (4) most tactic-related vulnerabilities were related to the tactics “Validate Inputs”, “Authenticate Actors” and “Authorize Actors”.more » « less
-
The supervisory control and data acquisition (SCADA) network in a smart grid requires to be reliable and efficient to transmit real-time data to the controller. Introducing SDN into a SCADA network helps in deploying novel grid control operations, as well as, their management. As the overall network cannot be transformed to have only SDN-enabled devices overnight because of budget constraints, a systematic deployment methodology is needed. In this work, we present a framework, named SDNSynth, that can design a hybrid network consisting of both legacy forwarding devices and programmable SDN-enabled switches. The design satisfies the resiliency requirements of the SCADA network, which are specified with respect to a set of identified threat vectors. The deployment plan primarily includes the best placements of the SDN-enabled switches. The plan may include one or more links to be installed newly. We model and implement the SDNSynth framework that includes the satisfaction of several requirements and constraints involved in the resilient operation of the SCADA. It uses satisfiability modulo theories (SMT) for encoding the synthesis model and solving it. We demonstrate SDNSynth on a case study and evaluate its performance on different synthetic SCADA systems.more » « less
-
Doglioni, C.; Kim, D.; Stewart, G.A.; Silvestris, L.; Jackson, P.; Kamleh, W. (Ed.)High Energy Physics (HEP) experiments rely on the networks as one of the critical parts of their infrastructure both within the participating laboratories and sites as well as globally to interconnect the sites, data centres and experiments instrumentation. Network virtualisation and programmable networks are two key enablers that facilitate agile, fast and more economical network infrastructures as well as service development, deployment and provisioning. Adoption of these technologies by HEP sites and experiments will allow them to design more scalable and robust networks while decreasing the overall cost and improving the effectiveness of the resource utilization. The primary challenge we currently face is ensuring that WLCG and its constituent collaborations will have the networking capabilities required to most effectively exploit LHC data for the lifetime of the LHC. In this paper we provide a high level summary of the HEPiX NFV Working Group report that explored some of the novel network capabilities that could potentially be deployment in time for HL-LHC.more » « less
An official website of the United States government

