Quantum noise is the key challenge in Noisy Intermediate-Scale Quantum (NISQ) computers. Previous work for mitigating noise has primarily focused on gate-level or pulse-level noise-adaptive compilation. However, limited research has explored a higher level of optimization by making the quantum circuits themselves resilient to noise.In this paper, we propose QuantumNAS, a comprehensive framework for noise-adaptive co-search of the variational circuit and qubit mapping. Variational quantum circuits are a promising approach for constructing quantum neural networks for machine learning and variational ansatzes for quantum simulation. However, finding the best variational circuit and its optimal parameters is challenging due to the large design space and parameter training cost. We propose to decouple the circuit search from parameter training by introducing a novel SuperCircuit. The SuperCircuit is constructed with multiple layers of pre-defined parameterized gates (e.g., U3 and CU3) and trained by iteratively sampling and updating the parameter subsets (SubCircuits) of it. It provides an accurate estimation of SubCircuits performance trained from scratch. Then we perform an evolutionary co-search of SubCircuit and its qubit mapping. The SubCircuit performance is estimated with parameters inherited from SuperCircuit and simulated with real device noise models. Finally, we perform iterative gate pruning and finetuning to remove redundant gates in a fine-grained manner.Extensively evaluated with 12 quantum machine learning (QML) and variational quantum eigensolver (VQE) benchmarks on 14 quantum computers, QuantumNAS significantly outperforms noise-unaware search, human, random, and existing noise-adaptive qubit mapping baselines. For QML tasks, QuantumNAS is the first to demonstrate over 95% 2-class, 85% 4-class, and 32% 10-class classification accuracy on real quantum computers. It also achieves the lowest eigenvalue for VQE tasks on H 2 , H 2 O, LiH, CH 4 , BeH 2 compared with UCCSD baselines. We also open-source the TorchQuantum library for fast training of parameterized quantum circuits to facilitate future research.
more »
« less
Adaptive neural network for quantum error mitigation
Abstract Quantum computing holds transformative promise, but its realization is hindered by the inherent susceptibility of quantum computers to errors. Quantum error mitigation has proved to be an enabling way to reduce computational error in present noisy intermediate scale quantum computers. This research introduces an innovative approach to quantum error mitigation by leveraging machine learning, specifically employing adaptive neural networks. With experiment and simulations done on 127-qubit IBM superconducting quantum computer, we were able to develop and train a neural network architecture to dynamically adjust output expectation values based on error characteristics. The model leverages a prior classifier module outcome on simulated quantum circuits with errors, and the antecedent neural network regression module adapts its parameters and response to each error characteristics. Results demonstrate the adaptive neural network’s efficacy in mitigating errors across diverse quantum circuits and noise models, showcasing its potential to surpass traditional error mitigation techniques with an accuracy of 99% using the fully adaptive neural network for quantum error mitigation. This work presents a significant application of classical machine learning methods towards enhancing the robustness and reliability of quantum computations, providing a pathway for the practical realization of quantum computing technologies.
more »
« less
- Award ID(s):
- 2231377
- PAR ID:
- 10568613
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Quantum Machine Intelligence
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2524-4906
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Quantum computers have the potential to provide exponential speedups over their classical counterparts. Quantum principles are being applied to fields such as communications, information processing, and artificial intelligence to achieve quantum advantage. However, quantum bits are extremely noisy and prone to decoherence. Thus, keeping the qubits error free is extremely important toward reliable quantum computing. Quantum error correcting codes have been studied for several decades and methods have been proposed to import classical error correcting codes to the quantum domain. Along with the exploration into novel and more efficient quantum error correction codes, it is also essential to design circuits for practical realization of these codes. This paper serves as a tutorial on designing and simulating quantum encoder and decoder circuits for stabilizer codes. We first describe Shor’s 9-qubit code which was the first quantum error correcting code. We discuss the stabilizer formalism along with the design of encoding and decoding circuits for stabilizer codes such as the five-qubit code and Steane code. We also design nearest neighbor compliant circuits for the above codes. The circuits were simulated and verified using IBM Qiskit.more » « less
-
Quantum computers in the current noisy intermediate-scale quantum (NISQ) era face two major limitations - size and error vulnerability. Although quantum error correction (QEC) methods exist, they are not applicable at the current size of computers, requiring thousands of qubits, while NISQ systems have nearly one hundred at most. One common approach to improve reliability is to adjust the compilation process to create a more reliable final circuit, where the two most critical compilation decisions are the qubit allocation and qubit routing problems. We focus on solving the qubit allocation problem and identifying initial layouts that result in a reduction of error. To identify these layouts, we combine reinforcement learning with a graph neural network (GNN)-based Q-network to process the mesh topology of the quantum computer, known as the backend, and make mapping decisions, creating a Graph Neural Network Assisted Quantum Compilation (GNAQC) strategy. We train the architecture using a set of four backends and six circuits and find that GNAQC improves output fidelity by roughly 12.7% over pre-existing allocation methods.more » « less
-
Parameterized Quantum Circuits (PQC) are promising towards quantum advantage on near-term quantum hardware. However, due to the large quantum noises (errors), the performance of PQC models has a severe degradation on real quantum devices. Take Quantum Neural Network (QNN) as an example, the accuracy gap between noise-free simulation and noisy results on IBMQ-Yorktown for MNIST-4 classification is over 60%. Existing noise mitigation methods are general ones without leveraging unique characteristics of PQC; on the other hand, existing PQC work does not consider noise effect. To this end, we present QuantumNAT, a PQC-specific framework to perform noise-aware optimizations in both training and inference stages to improve robustness. We experimentally observe that the effect of quantum noise to PQC measurement outcome is a linear map from noise-free outcome with a scaling and a shift factor. Motivated by that, we propose post-measurement normalization to mitigate the feature distribution differences between noise-free and noisy scenarios. Furthermore, to improve the robustness against noise, we propose noise injection to the training process by inserting quantum error gates to PQC according to realistic noise models of quantum hardware. Finally, post-measurement quantization is introduced to quantize the measurement outcomes to discrete values, achieving the denoising effect. Extensive experiments on 8 classification tasks using 6 quantum devices demonstrate that QuantumNAT improves accuracy by up to 43%, and achieves over 94% 2-class, 80% 4-class, and 34% 10-class classification accuracy measured on real quantum computers. The code for construction and noise-aware training of PQC is available in the TorchQuantum library.more » « less
-
Due to the limitations of current NISQ systems, error mitigation strategies are under development to alleviate the negative effects of error-inducing noise on quantum applications. This work proposes the use of machine learning (ML) as an error mitigation strategy, using ML to identify the accurate solutions to a quantum application in the presence of noise. Methods of encoding the probabilistic solution space of a basis-encoded quantum algorithm are researched to identify the characteristics which represent good ML training inputs. A multilayer perceptron artificial neural network (MLP ANN) was trained on the results of 8-state and 16-state basis-encoded quantum applications both in the presence of noise and in noise-free simulation. It is demonstrated using simulated quantum hardware and probabilistic noise models that a sufficiently trained model may identify accurate solutions to a quantum applications with over 90% precision and 80% recall on select data. The model makes confident predictions even with enough noise that the solutions cannot be determined by direct observation, and when it cannot, it can identify the inconclusive experiments as candidates for other error mitigation techniques.more » « less
An official website of the United States government
