skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimization-based Coordination and Control of Traffic Lights and Mixed Traffic in Multi-Intersection Environments
Award ID(s):
2127605
PAR ID:
10568851
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Proceedings of the American Control Conference
ISSN:
0743-1619
ISBN:
979-8-3503-2806-6
Page Range / eLocation ID:
3162 to 3168
Format(s):
Medium: X
Location:
San Diego, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. The traffic congestion hits most big cities in the world - threatening long delays and serious reductions in air quality. City and local government officials continue to face challenges in optimizing crowd flow, synchronizing traffic and mitigating threats or dangerous situations. One of the major challenges faced by city planners and traffic engineers is developing a robust traffic controller that eliminates traffic congestion and imbalanced traffic flow at intersections. Ensuring that traffic moves smoothly and minimizing the waiting time in intersections requires automated vehicle detection techniques for controlling the traffic light automatically, which are still challenging problems. In this paper, we propose an intelligent traffic pattern collection and analysis model, named TPCAM, based on traffic cameras to help in smooth vehicular movement on junctions and set to reduce the traffic congestion. Our traffic detection and pattern analysis model aims at detecting and calculating the traffic flux of vehicles and pedestrians at intersections in real-time. Our system can utilize one camera to capture all the traffic flows in one intersection instead of multiple cameras, which will reduce the infrastructure requirement and potential for easy deployment. We propose a new deep learning model based on YOLOv2 and adapt the model for the traffic detection scenarios. To reduce the network burdens and eliminate the deployment of network backbone at the intersections, we propose to process the traffic video data at the network edge without transmitting the big data back to the cloud. To improve the processing frame rate at the edge, we further propose deep object tracking algorithm leveraging adaptive multi-modal models and make it robust to object occlusions and varying lighting conditions. Based on the deep learning based detection and tracking, we can achieve pseudo-30FPS via adaptive key frame selection. 
    more » « less
  2. Meng, Meng (Ed.)
    Managed lanes, such as a dedicated lane for connected and automated vehicles (CAVs), can provide not only technological accommodation but also desired market incentives for road users to adopt CAVs in the near future. In this paper, we investigate traffic flow characteristics with two configurations of the managed lane across different market penetration rates and quantify the benefits from the perspectives of lane-level headway distribution, fuel consumption, communication density, and overall network performance. The results highlight the benefits of implementing managed lane strategies for CAVs: (1) A dedicated CAV lane significantly extends the stable region of the speed-flow diagram and yields a greater road capacity. As the result shows, the highest flow rate is 3400 vehicles per hour per lane at 90% market penetration rate with one CAV lane. (2) The concentration of CAVs in one lane results in a narrower headway distribution (with smaller standard deviation) even with partial market penetration. (3) A dedicated CAV lane is also able to eliminate duel-bell-shape distribution that is caused by the heterogeneous traffic flow. (4) A dedicated CAV lane creates a more consistent CAV density, which facilitates communication activity and decreases the probability of packet dropping. 
    more » « less