skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Bit Complexity of Dynamic Algebraic Formulas and Their Determinants
Many iterative algorithms in computer science require repeated computation of some algebraic expression whose input varies slightly from one iteration to the next. Although efficient data structures have been proposed for maintaining the solution of such algebraic expressions under low-rank updates, most of these results are only analyzed under exact arithmetic (real-RAM model and finite fields) which may not accurately reflect the more limited complexity guarantees of real computers. In this paper, we analyze the stability and bit complexity of such data structures for expressions that involve the inversion, multiplication, addition, and subtraction of matrices under the word-RAM model. We show that the bit complexity only increases linearly in the number of matrix operations in the expression. In addition, we consider the bit complexity of maintaining the determinant of a matrix expression. We show that the required bit complexity depends on the logarithm of the condition number of matrices instead of the logarithm of their determinant. Finally, we discuss rank maintenance and its connections to determinant maintenance. Our results have wide applications ranging from computational geometry (e.g., computing the volume of a polytope) to optimization (e.g., solving linear programs using the simplex algorithm).  more » « less
Award ID(s):
2338816
PAR ID:
10569154
Author(s) / Creator(s):
; ; ;
Editor(s):
Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
297
ISSN:
1868-8969
ISBN:
978-3-95977-322-5
Page Range / eLocation ID:
297-297
Subject(s) / Keyword(s):
Data Structures Online Algorithms Bit Complexity Theory of computation → Data structures design and analysis
Format(s):
Medium: X Size: 20 pages; 840358 bytes Other: application/pdf
Size(s):
20 pages 840358 bytes
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Can linear systems be solved faster than matrix multiplication? While there has been remarkable progress for the special cases of graph structured linear systems, in the general setting, the bit complexity of solving an $$n \times n$$ linear system $Ax=b$ is $$\tilde{O}(n^\omega)$$, where $$\omega < 2.372864$$ is the matrix multiplication exponent. Improving on this has been an open problem even for sparse linear systems with poly$(n)$ condition number. In this paper, we present an algorithm that solves linear systems in sparse matrices asymptotically faster than matrix multiplication for any $$\omega > 2$$. This speedup holds for any input matrix $$A$$ with $$o(n^{\omega -1}/\log(\kappa(A)))$$ non-zeros, where $$\kappa(A)$$ is the condition number of $$A$$. For poly$(n)$-conditioned matrices with $$\tilde{O}(n)$$ nonzeros, and the current value of $$\omega$$, the bit complexity of our algorithm to solve to within any $$1/\text{poly}(n)$$ error is $$O(n^{2.331645})$$. Our algorithm can be viewed as an efficient, randomized implementation of the block Krylov method via recursive low displacement rank factorizations. It is inspired by the algorithm of [Eberly et al. ISSAC `06 `07] for inverting matrices over finite fields. In our analysis of numerical stability, we develop matrix anti-concentration techniques to bound the smallest eigenvalue and the smallest gap in eigenvalues of semi-random matrices. 
    more » « less
  2. We propose a primal-dual based framework for analyzing the global optimality of nonconvex low-rank matrix recovery. Our analysis are based on the restricted strongly convex and smooth conditions, which can be verified for a broad family of loss functions. In addition, our analytic framework can directly handle the widely-used incoherence constraints through the lens of duality. We illustrate the applicability of the proposed framework to matrix completion and one-bit matrix completion, and prove that all these problems have no spurious local minima. Our results not only improve the sample complexity required for characterizing the global optimality of matrix completion, but also resolve an open problem in Ge et al. (2017) regarding one-bit matrix completion. Numerical experiments show that primal-dual based algorithm can successfully recover the global optimum for various low-rank problems. 
    more » « less
  3. Motivated by problems in algebraic complexity theory (e.g., matrix multiplication) and extremal combinatorics (e.g., the cap set problem and the sunflower problem), we introduce the geometric rank as a new tool in the study of tensors and hypergraphs. We prove that the geometric rank is an upper bound on the subrank of tensors and the independence number of hypergraphs. We prove that the geometric rank is smaller than the slice rank of Tao, and relate geometric rank to the analytic rank of Gowers and Wolf in an asymptotic fashion. As a first application, we use geometric rank to prove a tight upper bound on the (border) subrank of the matrix multiplication tensors, matching Strassen's well-known lower bound from 1987. 
    more » « less
  4. Let f: {0, 1}n → {0, 1} be a boolean function, and let f∧(x, y) = f(x ∧ y) denote the AND-function of f, where x ∧ y denotes bit-wise AND. We study the deterministic communication complexity of f∧ and show that, up to a logn factor, it is bounded by a polynomial in the logarithm of the real rank of the communication matrix of f∧. This comes within a logn factor of establishing the log-rank conjecture for AND-functions with no assumptions on f. Our result stands in contrast with previous results on special cases of the log-rank conjecture, which needed significant restrictions on f such as monotonicity or low F2-degree. Our techniques can also be used to prove (within a logn factor) a lifting theorem for AND-functions, stating that the deterministic communication complexity of f∧ is polynomially related to the AND-decision tree complexity of f. The results rely on a new structural result regarding boolean functions f: {0, 1}n → {0, 1} with a sparse polynomial representation, which may be of independent interest. We show that if the polynomial computing f has few monomials then the set system of the monomials has a small hitting set, of size poly-logarithmic in its sparsity. We also establish extensions of this result to multi-linear polynomials f: {0, 1}n → with a larger range. 
    more » « less
  5. We consider worker skill estimation for the single-coin Dawid-Skene crowdsourcing model. In practice, skill-estimation is challenging because worker assignments are sparse and irregular due to the arbitrary and uncontrolled availability of workers. We formulate skill estimation as a rank-one correlation-matrix completion problem, where the observed components correspond to observed label correlation between workers. We show that the correlation matrix can be successfully recovered and skills are identifiable if and only if the sampling matrix (observed components) does not have a bipartite connected component. We then propose a projected gradient descent scheme and show that skill estimates converge to the desired global optima for such sampling matrices. Our proof is original and the results are surprising in light of the fact that even the weighted rank-one matrix factorization problem is NP-hard in general. Next, we derive sample complexity bounds in terms of spectral properties of the signless Laplacian of the sampling matrix. Our proposed scheme achieves state-of-art performance on a number of real-world datasets. 
    more » « less