skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stability of a dispersion of elongated particles embedded in a viscous membrane
We develop a mean-field model to examine the stability of a ‘quasi-2-D suspension’ of elongated particles embedded within a viscous membrane. This geometry represents several biological and synthetic settings, and we reveal mechanisms by which the anisotropic mobility of particles interacts with long-ranged viscous membrane hydrodynamics. We first show that a system of slender rod-like particles driven by a constant force is unstable to perturbations in concentration – much like sedimentation in analogous 3-D suspensions – so long as membrane viscous stresses dominate. However, increasing the contribution of viscous stresses from the surrounding 3-D fluid(s) suppresses such an instability. We then tie this result to the hydrodynamic disturbances generated by each particle in the plane of the membrane and show that enhancing subphase viscous contributions generates extensional fields that orient neighbouring particles in a manner that draws them apart. The balance of flux of particles aggregating versus separating then leads to a wave number selection in the mean-field model.  more » « less
Award ID(s):
2340415
PAR ID:
10569205
Author(s) / Creator(s):
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
987
ISSN:
0022-1120
Page Range / eLocation ID:
R4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Viscous fingering, a classic hydrodynamic instability, is governed by the the competition between destabilising viscosity ratios and stabilising surface tension or thermal diffusion. We show that the channel confinement can induce ‘diffusion’-like stabilising effects on viscous fingering even in the absence of interfacial tension and thermal diffusion, when a clear oil invades the mixture of the same oil and non-colloidal particles. The key lies in the generation of long-range dipolar disturbance flows by highly confined particles that form a monolayer inside a Hele-Shaw cell. We develop a coarse-grained model whose results correctly predict universal fingering dynamics that is independent of particle concentrations. This new mechanism offers insights into manipulating and harnessing collective motion in non-equilibrium systems. 
    more » « less
  2. Pressure anisotropy can strongly influence the dynamics of weakly collisional, high-beta plasmas, but its effects are missed by standard magnetohydrodynamics (MHD). Small changes to the magnetic-field strength generate large pressure-anisotropy forces, heating the plasma, driving instabilities and rearranging flows, even on scales far above the particles’ gyroscales where kinetic effects are traditionally considered most important. Here, we study the influence of pressure anisotropy on turbulent plasmas threaded by a mean magnetic field (Alfvénic turbulence). Extending previous results that were concerned with Braginskii MHD, we consider a wide range of regimes and parameters using a simplified fluid model based on drift kinetics with heat fluxes calculated using a Landau-fluid closure. We show that viscous (pressure-anisotropy) heating dissipates between a quarter (in collisionless regimes) and half (in collisional regimes) of the turbulent-cascade power injected at large scales; this does not depend strongly on either plasma beta or the ion-to-electron temperature ratio. This will in turn influence the plasma's thermodynamics by regulating energy partition between different dissipation channels (e.g. electron and ion heat). Due to the pressure anisotropy's rapid dynamic feedback onto the flows that create it – an effect we term ‘magneto-immutability’ – the viscous heating is confined to a narrow range of scales near the forcing scale, supporting a nearly conservative, MHD-like inertial-range cascade, via which the rest of the energy is transferred to small scales. Despite the simplified model, our results – including the viscous heating rate, distributions and turbulent spectra – compare favourably with recent hybrid-kinetic simulations. This is promising for the more general use of extended-fluid (or even MHD) approaches to model weakly collisional plasmas such as the intracluster medium, hot accretion flows and the solar wind. 
    more » « less
  3. Inspired by the recent realization of a two-dimensional (2-D) chiral fluid as an active monolayer droplet moving atop a 3-D Stokesian fluid, we formulate mathematically its free-boundary dynamics. The surface droplet is described as a general 2-D linear, incompressible and isotropic fluid, having a viscous shear stress, an active chiral driving stress and a Hall stress allowed by the lack of time-reversal symmetry. The droplet interacts with itself through its driven internal mechanics and by driving flows in the underlying 3-D Stokes phase. We pose the dynamics as the solution to a singular integral–differential equation, over the droplet surface, using the mapping from surface stress to surface velocity for the 3-D Stokes equations. Specializing to the case of axisymmetric droplets, exact representations for the chiral surface flow are given in terms of solutions to a singular integral equation, solved using both analytical and numerical techniques. For a disc-shaped monolayer, we additionally employ a semi-analytical solution that hinges on an orthogonal basis of Bessel functions and allows for efficient computation of the monolayer velocity field, which ranges from a nearly solid-body rotation to a unidirectional edge current, depending on the subphase depth and the Saffman–Delbrück length. Except in the near-wall limit, these solutions have divergent surface shear stresses at droplet boundaries, a signature of systems with codimension-one domains embedded in a 3-D medium. We further investigate the effect of a Hall viscosity, which couples radial and transverse surface velocity components, on the dynamics of a closing cavity. Hall stresses are seen to drive inward radial motion, even in the absence of edge tension. 
    more » « less
  4. Nanoparticles adsorbed on a membrane can induce deformations of the membrane that give rise to effective interactions between the particles. Previous studies have focused primarily on rigid nanoparticles with fixed shapes. However, DNA origami technology has enabled the creation of deformable nanostructures with controllable shapes and mechanical properties, presenting new opportunities to modulate interactions between particles adsorbed on deformable surfaces. Here we use coarse-grained molecular dynamics simulations to investigate deformable, hinge-like nanostructures anchored to lipid membranes via cholesterol anchors. We characterize deformations of the particles and membrane as a function of the hinge stiffness. Flexible particles adopt open configurations to conform to a flat membrane, whereas stiffer particles induce deformations of the membrane. We further show that particles spontaneously aggregate and that cooperative effects lead to changes in their shape when they are close together. Using umbrella sampling methods, we quantify the effective interaction between two particles and show that stiffer hinge-like particles experience stronger and longer-ranged attraction. Our results demonstrate that interactions between deformable, membrane-anchored nanoparticles can be controlled by modifying mechanical properties of the particles, suggesting new ways to modulate the self-assembly of particles on deformable surfaces. 
    more » « less
  5. Accurate and efficient prediction of drug partitioning in model membranes is of significant interest to the pharmaceutical industry. Herein, we utilize advanced sampling methods, specifically, the adaptive biasing force methodology to calculate the potential of mean force for a model hydrophobic anticancer drug, camptothecin (CPT), across three model interfaces. We consider an octanol bilayer, a thick octanol/water interface, and a model 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/water interface. We characterize the enthalpic and entropic contributions of the drug to the potential of mean force. We show that the rotational entropy of the drug is inversely related to the probability of hydrogen bond formation of the drug with the POPC membrane. In addition, in long-time microsecond simulations of a high concentration of CPT above the POPC membrane, we show that strong drug–drug aromatic interactions shift the spatial orientation of the drug with the membrane. Stacks of hydrophobic drugs form, allowing penetration of the drug just under the POPC head groups. These results imply that inhomogeneous membrane models need to take into account the effect of drug aggregation on the membrane environment. 
    more » « less