Abstract The potential for animals to modify spatial patterns of nutrient limitation for autotrophs and habitat availability for other members of their communities is increasingly recognized. However, net trophic effects of consumers acting as ecosystem engineers remain poorly known. The American AlligatorAlligator mississippiensisis an abundant predator capable of dramatic modifications of physical habitat through the creation and maintenance of pond‐like basins, but its role in influencing community structure and nutrient dynamics is less appreciated.We investigated if alligators engineer differences in nutrient availability and changes to community structure by their creation of ‘alligator ponds’ compared to the surrounding phosphorus (P)‐limited oligotrophic marsh.We used a halo sampling design of three distinct habitats extending outward from 10 active alligator ponds across a hydrological gradient in the Everglades, USA. We performed nutrient analysis on basal food‐web resources and quantitative community analyses, and stoichiometric analyses on plants and animals.Our findings demonstrate that alligators act as ecosystem engineers and enhance food‐web heterogeneity by increasing nutrient availability, manipulating physical structure and altering algal, plant and animal communities. Flocculent detritus, an unconsolidated layer of particulate organic matter and soil, showed strong patterns of P enrichment in ponds. Higher P availability in alligator ponds also resulted in bottom‐up trophic transfer of nutrients as evidenced by higher growth rates (lower N:P) for plants and aquatic consumers. Edge habitats surrounding alligator ponds contained the most diverse communities of invertebrates and plants, but low total abundance of fishes, likely driven by high densities of emergent macrophytes. Pond communities exhibited higher abundance of fish compared to edge habitat and were dominated by compositions of small invertebrates that track high nutrient availability in the water column. Marshes contained high numbers of animals that are closely tied to periphyton mats, which were absent from other habitats.Alligator‐engineered habitats are ecologically important by providing nutrient‐enriched ‘hotspots’ in an oligotrophic system, habitat heterogeneity to marshes, and refuges for other fauna during seasonal disturbances. This work adds to growing evidence that efforts to model community dynamics should routinely consider animal‐mediated bottom‐up processes like ecosystem engineering.
more »
« less
Habitat engineering by an apex predator generates spatial trophic dynamics across a temporal environmental stress gradient
Abstract Ecosystem engineering is a facilitative interaction that generates bottom‐up extrinsic variability that may increase species coexistence, particularly along a stress/disturbance gradient. American alligators (Alligator mississippiensis) create and maintain ‘alligator ponds’ that serve as dry‐season refuges for other animals. During seasonal water recession, these ponds present an opportunity to examine predictions of the stress‐gradient (SGH) and intermediate disturbance hypotheses (IDH).To test the assumption that engineering would facilitate species coexistence in ponds along a stress gradient (seasonal drying), we modelled fish catch‐per‐unit‐effort (CPUE) in ponds and marshes using a long‐term dataset (1997–2022). Stomach contents (n = 1677 from 46 species) and stable isotopes of carbon and nitrogen (n = 3978 representing 91 taxa) from 2018 to 2019 were used to evaluate effects of engineering on trophic dynamics. We quantified diets, trophic niche areas, trophic positions and basal‐resource use among habitats and between seasons. As environmental stress increases, we used seasonal changes in trophic niche areas as a proxy for competition to examine SGH and IDH.Across long‐term data, fish CPUE increased by a factor of 12 in alligator ponds as the marsh dried. This validates the assumption that ponds are an important dry‐season refuge. We found that 73% of diet shifts occurred during the dry season but that diets differed among habitats in only 11% of comparisons. From wet season to dry season, both stomach contents and stable isotopes revealed changes in niche areas. Direction of change depended on trophic guild but was opposite between stable‐isotope and stomach‐content niches, except for detritivores.Stomach‐content niches generally increased suggesting decreased competition in the dry season consistent with existing theory, but stable‐isotope niches yielded the opposite. This may result from a temporal mismatch with stomach contents reflecting diets over hours, while stable isotopes integrate diet over weeks. Consumptive effects may have a stronger effect than competition on niche areas over longer time intervals.Overall, our results demonstrated that alligators ameliorated dry‐season stress by engineering deep‐water habitats and altering food‐web dynamics. We propose that ecosystem engineers facilitate coexistence at intermediate values of stress/disturbance consistent with predictions of both the SGH and IDH.
more »
« less
- PAR ID:
- 10569249
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Animal Ecology
- Volume:
- 94
- Issue:
- 4
- ISSN:
- 0021-8790
- Format(s):
- Medium: X Size: p. 611-626
- Size(s):
- p. 611-626
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Trophic Disruption Hypothesis (TDH) predicts that invasive species may cause native species to undergo trophic dispersion (change in trophic‐niche area) and trophic displacement (diet switching), predictably altering food‐web structure and biodiversity. In Everglades National Park, Florida, USA, African Jewelfish (Rubricatochromis letourneuxi) density has recently (2012–2017) undergone a boom‐bust cycle, linked to declines of native taxa and altered aquatic‐community composition that persist after the bust. Everglades restoration efforts seek to restore historic hydrologic conditions that may contribute to food‐web changes unfolding coincidentally with the jewelfish boom. We used complementary datasets of stomach contents and stable isotopes (δ15N and δ13C) to quantify pre‐ and post‐invasion consumer diets, trophic positions, trophic niches, basal energy use (autotrophic vs. heterotrophic), and energy fluxes to test assumptions of the TDH. The direction of change for these metrics from dry season to wet‐season post‐invasion (i.e., effect of adding water) was used as a proxy for the direction of effects from restored water delivery. For trophic shifts attributable to jewelfish invasion, we tested assumptions of the TDH. Comparing pre‐ versus post‐invasion for native consumers, we observed trophic displacement in 42% of species size classes (based on stomach contents), trophic dispersion for 57% of species (based on stable isotopes) and 54% of species size classes (based on stomach contents), and overall greater reliance on autotrophic energy. Altered trophic dynamics were more frequent pre‐ versus post‐invasion than among habitats or between seasons, and the direction of those responses was in the opposite direction of dry‐season to wet‐season differences and/or occurred at a higher frequency. Post‐invasion food‐web structure and function revealed increased relative abundance of mesopredators (including African Jewelfish) and reduced biomass and energy fluxes into and out of small fishes (e.g., Cyprinodontiformes). Our results show that African Jewelfish invasion is linked to altered spatiotemporal trophic dynamics and energy fluxes through declines in native fishes and invertebrates, which indirectly affected trophic relationships at the regional scale in the Everglades. As a result, we suggest extending the TDH to explicitly include the potential for invasive species to alter basal energy use, spatiotemporal trophic dynamics, and energy fluxes.more » « less
-
{"Abstract":["Stomach contents of fishes (1977-1981) and stable isotopes of fishes, invertebrates, and basal resources (1994) were collected from spikerush marsh, sawgrass ridge, and alligator pond habitats in Shark River Slough, Everglades National Park, Florida, USA. These data were used to quantify diet, trophic niche area, trophic position, basal resource use and how these metrics vary among size classes, seasons, and habitats. Data collection is complete. These data support Flood et al. (2023). Associated R code will be made available through Peter Flood's GitHub: https://github.com/pjflood/historic_everglades_aquatic_food_web. \n References:\n Flood, Peter J., William F. Loftus, and Joel C. Trexler. "Fishes in a seasonally pulsed wetland show spatiotemporal shifts in diet and trophic niche but not shifts in trophic position." Food Webs 34 (2023): e00265. https://doi.org/10.1016/j.fooweb.2022.e00265"]}more » « less
-
Abstract A major question in ecology is how often competing species evolve to reduce competitive interactions and facilitate coexistence. One untested route for a reduction in competitive interactions is through ontogenetic changes in the trophic niche of one or more of the interacting species. In such cases, theory predicts that two species can coexist if the weaker competitor changes its resource niche to a greater degree with increased body size than the superior competitor.We tested this prediction using stable isotopes that yield information about the trophic position (δ15N) and carbon source (δ13C) of two coexisting fish species: Trinidadian guppiesPoecilia reticulataand killifishRivulus hartii.We examined fish from locations representing three natural community types: (1) where killifish and guppies live with predators, (2) where killifish and guppies live without predators and (3) where killifish are the only fish species. We also examined killifish from communities in which we had introduced guppies, providing a temporal sequence of the community changes following the transition from a killifish only to a killifish–guppy community.We found that killifish, which are the weaker competitor, had a much larger ontogenetic niche shift in trophic position than guppies in the community where competition is most intense (killifish–guppy only). This result is consistent with theory for size‐structured populations, which predicts that these results should lead to stable coexistence of the two species. Comparisons with other communities containing guppies, killifish and predators and ones where killifish live by themselves revealed that these results are caused primarily by a loss of ontogenetic niche changes in guppies, even though they are the stronger competitor. Comparisons of these natural communities with communities in which guppies were translocated into sites containing only killifish showed that the experimental communities were intermediate between the natural killifish–guppy community and the killifish–guppy–predator community, suggesting contemporary evolution in these ontogenetic trophic differences.These results provide comparative evidence for ontogenetic niche shifts in contributing to species coexistence and comparative and experimental evidence for evolutionary or plastic changes in ontogenetic niche shifts following the formation of new communities.more » « less
-
Abstract Niche differentiation with respect to light availability as it varies across succession has often been thought to explain tree species coexistence. Demographic light‐related niches represented by growth‐survival and stature‐recruitment trade‐offs and captured by demographic groups (slow, fast, long‐lived pioneers, short‐lived breeders and intermediate) have been shown to accurately represent the biomass dynamics of secondary and old‐growth forests in central Panama in a model. However, whether the simple mechanisms of that well‐parameterized and accurate model are enough to support the long‐term coexistence of demographic groups across these trade‐offs has yet to be tested.Here, we develop a model to test whether stochastic, small‐scale gap disturbances and subsequent competition for light can support the long‐term coexistence of the observed demographic groups in the Barro Colorado Island forest dynamics plot. Specifically, to test whether the demographic differences among species promote coexistence, we compare niche simulation models, parameterized by the different demographic groups, to a variety of neutral models, where the species have the same demographic parameters.Upon exploring the estimated range of possible parameterizations of recruitment (a difficult‐to‐measure parameter), we identify several parameterizations where differences among groups along the growth‐survival and stature‐recruitment trade‐off axes facilitate long‐term coexistence. We find that gap disturbances are essential for these results, indicating that it is the differences in the subsequent competition for light through time that provide the opportunity for stabilizing niche differentiation. Additionally, the parameterizations that generate stable coexistence display successional negative density dependence and realistic within‐patch post‐disturbance forest dynamics.Synthesis. This model‐data integration exercise indicates that small‐scale disturbances and subsequent competition for light may be significant forces for stable diversity maintenance of demographic groups along the growth–survival and stature–recruitment trade‐off axes in a neotropical forest. This result, however, holds only for a subset of the empirically reasonable recruitment parameters, indicating the importance of improving the understanding of recruitment and its demographic trade‐offs for understanding demographic strategy coexistence.more » « less
An official website of the United States government
