Pressure-driven flows of viscoelastic fluids in narrow non-uniform geometries are common in physiological flows and various industrial applications. For such flows, one of the main interests is understanding the relationship between the flow rate$$q$$and the pressure drop$$\Delta p$$, which, to date, is studied primarily using numerical simulations. We analyse the flow of the Oldroyd-B fluid in slowly varying arbitrarily shaped, contracting channels and present a theoretical framework for calculating the$$q-\Delta p$$relation. We apply lubrication theory and consider the ultra-dilute limit, in which the velocity profile remains parabolic and Newtonian, resulting in a one-way coupling between the velocity and polymer conformation tensor. This one-way coupling enables us to derive closed-form expressions for the conformation tensor and the flow rate–pressure drop relation for arbitrary values of the Deborah number ($$De$$). Furthermore, we provide analytical expressions for the conformation tensor and the$$q-\Delta p$$relation in the high-Deborah-number limit, complementing our previous low-Deborah-number lubrication analysis. We reveal that the pressure drop in the contraction monotonically decreases with$$De$$, having linear scaling at high Deborah numbers, and identify the physical mechanisms governing the pressure drop reduction. We further elucidate the spatial relaxation of elastic stresses and pressure gradient in the exit channel following the contraction and show that the downstream distance required for such relaxation scales linearly with$$De$$.
more »
« less
Fast flow of an Oldroyd-B model fluid through a narrow slowly varying contraction
Lubrication theory is adapted to incorporate the large normal stresses that occur for order-one Deborah numbers,$$De$$, the ratio of the relaxation time to the residence time. Comparing with the pressure drop for a Newtonian viscous fluid with a viscosity equal to that of an Oldroyd-B fluid in steady simple shear, we find numerically a reduced pressure drop through a contraction and an increased pressure drop through an expansion, both changing linearly with$$De$$at high$$De$$. For a constriction, there is a smaller pressure drop that plateaus at high$$De$$. For a contraction, much of the change in pressure drop occurs in the stress relaxation in a long exit channel. An asymptotic analysis for high$$De$$, based on the idea that normal stresses are stretched by an accelerating flow in proportion to the square of the velocity, reveals that the large linear changes in pressure drop are due to higher normal stresses pulling the fluid through the narrowest gap. A secondary cause of the reduction is that the elastic shear stresses do not have time to build up to their steady-state equilibrium value while they accelerate through a contraction. We find for a contraction or expansion that the high$$De$$analysis works well for$$De>0.4$$.
more »
« less
- Award ID(s):
- 2246791
- PAR ID:
- 10569264
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 988
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The motion of a freely rotating prolate spheroid in a simple shear flow of a dilute polymeric solution is examined in the limit of large particle aspect ratio,$$\kappa$$. A regular perturbation expansion in the polymer concentration,$$c$$, a generalized reciprocal theorem, and slender body theory to represent the velocity field of a Newtonian fluid around the spheroid are used to obtain the$$O(c)$$correction to the particle's orientational dynamics. The resulting dynamical system predicts a range of orientational behaviours qualitatively dependent upon$$c\, De$$($$De$$is the imposed shear rate times the polymer relaxation time) and$$\kappa$$and quantitatively on$$c$$. At a small but finite$$c\, De$$, the particle spirals towards a limit cycle near the vorticity axis for all initial conditions. Upon increasing$$\kappa$$, the limit cycle becomes smaller. Thus, ultimately the particle undergoes a periodic motion around and at a small angle from the vorticity axis. At moderate$$c\, De$$, a particle starting near the flow–gradient plane departs it monotonically instead of spirally, as this plane (a limit cycle at smaller$$c\, De$$) obtains a saddle and an unstable node. The former is close to the flow direction. Upon further increasing$$c\, De$$, the saddle node changes to a stable node. Therefore, depending upon the initial condition, a particle may either approach a periodic orbit near the vorticity axis or obtain a stable orientation near the flow direction. Upon further increasing$$c\, De$$, the limit cycle near the vorticity axis vanishes, and the particle aligns with the flow direction for all starting orientations.more » « less
-
Lift and drag forces on moving intruders in flowing granular materials are of fundamental interest but have not yet been fully characterized. Drag on an intruder in granular shear flow has been studied almost exclusively for the intruder moving across flow streamlines, and the few studies of the lift explore a relatively limited range of parameters. Here, we use discrete element method simulations to measure the lift force,$$F_{{L}}$$, and the drag force on a spherical intruder in a uniformly sheared bed of smaller spheres for a range of streamwise intruder slip velocities,$$u_{{s}}$$. The streamwise drag matches the previously characterized Stokes-like cross-flow drag. However,$$F_{{L}}$$in granular shear flow acts in the opposite direction to the Saffman lift in a sheared fluid at low$$u_{{s}}$$, reaches a maximum value and then decreases with increasing$$u_{{s}}$$, eventually reversing direction. This non-monotonic response holds over a range of flow conditions, and the$$F_{{L}}$$versus$$u_{{s}}$$data collapse when both quantities are scaled using the particle size, shear rate and overburden pressure. Analogous fluid simulations demonstrate that the flow around the intruder particle is similar in the granular and fluid cases. However, the shear stress on the granular intruder is notably less than that in a fluid shear flow. This difference, combined with a void behind the intruder in granular flow in which the stresses are zero, significantly changes the lift-force-inducing stresses acting on the intruder between the granular and fluid cases.more » « less
-
We examine the circular, self-similar expansion of frictional rupture due to fluid injected at a constant rate. Fluid migrates within a thin permeable layer parallel to and containing the fault plane. When the Poisson ratio$$\nu =0$$, self-similarity of the fluid pressure implies fault slip also evolves in an axisymmetric, self-similar manner, reducing the three-dimensional problem for the evolution of fault slip to a single self-similar dimension. The rupture radius grows as$$\lambda \sqrt {4\alpha _{hy} t}$$, where$$t$$is time since the start of injection and$$\alpha _{hy}$$is the hydraulic diffusivity of the pore fluid pressure. The prefactor$$\lambda$$is determined by a single parameter,$$T$$, which depends on the pre-injection stress state and injection conditions. The prefactor has the range$$0\lt \lambda \lt \infty$$, the lower and upper limits of which correspond to marginal pressurisation of the fault and critically stressed conditions, in which the fault-resolved shear stress is close to the pre-injection fault strength. In both limits, we derive solutions for slip by perturbation expansion, to arbitrary order. In the marginally pressurised limit ($$\lambda \rightarrow 0$$), the perturbation is regular and the series expansion is convergent. For the critically stressed limit ($$\lambda \rightarrow \infty$$), the perturbation is singular, contains a boundary layer and an outer solution, and the series is divergent. In this case, we provide a composite solution with uniform convergence over the entire rupture using a matched asymptotic expansion. We provide error estimates of the asymptotic expansions in both limits and demonstrate optimal truncation of the singular perturbation in the critically stressed limit.more » « less
-
The motion and deformation of a neutrally buoyant drop in a rectangular channel experiencing a pressure-driven flow at a low Reynolds number has been investigated both experimentally and numerically. A moving-frame boundary-integral algorithm was used to simulate the drop dynamics, with a focus on steady-state drop velocity and deformation. Results are presented for drops of varying undeformed diameters relative to channel height ($$D/H$$), drop-to-bulk viscosity ratio ($$\lambda$$), capillary number ($$Ca$$, ratio of deforming viscous forces to shape-preserving interfacial tension) and initial position in the channel in a parameter space larger than considered previously. The general trend shows that the drop steady-state velocity decreases with increasing drop diameter and viscosity ratio but increases with increasing$$Ca$$. An opposite trend is seen for drops with small viscosity ratio, however, where the steady-state velocity increases with increasing$$D/H$$and can exceed the maximum background flow velocity. Experimental results verify theoretical predictions. A deformable drop with a size comparable to the channel height when placed off centre migrates towards the centreline and attains a steady state there. In general, a drop with a low viscosity ratio and high capillary number experiences faster cross-stream migration. With increasing aspect ratio, there is a competition between the effect of reduced wall interactions and lower maximum channel centreline velocity at fixed average velocity, with the former helping drops attain higher steady-state velocities at low aspect ratios, but the latter takes over at aspect ratios above approximately 1.5.more » « less
An official website of the United States government

