skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Engineering grain boundary energy with thermal profiles to control grain growth in SrTiO 3
Abstract This study investigates the influence of thermal history on grain boundary (GB) energy and the grain growth behavior of SrTiO3at 1425°C. Two thermal profiles were explored: (1) a single‐step sintering at 1425°C for 1 h and (2) a two‐step profile with sintering completed at 1425°C for 1 h with an additional 10 h at 1350°C. Electron backscattered diffraction and atomic force microscopy were utilized to measure the grain size and GB energy distributions, respectively, for the samples before and after grain growth at 1425°C for 10 h. The two‐step profile exhibits fewer abnormal grains and a slower growth rate at 1425°C than the single‐step profile. Additionally, the two‐step sample comprises few high‐energy GBs and a narrow GB energy distribution, which suggests that it had a lower driving force for subsequent grain growth. The thermal profile was able to sufficiently change the growth rate such that the two‐step sample results in a finer grain size than observed for the single‐step sample after 10 h at 1425°C despite being exposed to elevated temperatures for almost twice as long. These results suggest that GB energy engineering through thermal profile modification can be used to control the grain growth rate and abnormal grain growth likelihood.  more » « less
Award ID(s):
2246305
PAR ID:
10569339
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of the American Ceramic Society
Volume:
107
Issue:
11
ISSN:
0002-7820
Page Range / eLocation ID:
7062 to 7071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Grain growth under shear annealing is crucial for controlling the properties of polycrystalline materials. However, their microscopic kinetics are not well understood because individual atomic trajectories are difficult to track. Here, we study grain growth with single-particle kinetics in colloidal polycrystals using video microscopy. Rich grain-growth phenomena are revealed in three shear regimes, including the normal grain growth (NGG) in weak shear melting–recrystallization process in strong shear. For intermediate shear, early stage NGG is arrested by built-up stress and eventually gives way to dynamic abnormal grain growth (DAGG). We find that DAGG occurs via a melting–recrystallization process, which naturally explains the puzzling stress drop at the onset of DAGG in metals. Moreover, we visualize that grain boundary (GB) migration is coupled with shear via disconnection gliding. The disconnection-gliding dynamics and the collective motions of ambient particles are resolved. We also observed that grain rotation can violate the conventional relation R × θ = c o n s t a n t (R is the grain radius, and θ is the misorientation angle between two grains) by emission and annihilation of dislocations across the grain, resulting in a step-by-step rotation. Besides grain growth, we discover a result in shear-induced melting: The melting volume fraction varies sinusoidally on the angle mismatch between the triangular lattice orientation of the grain and the shear direction. These discoveries hold potential to inform microstructure engineering of polycrystalline materials. 
    more » « less
  2. If variety is the spice of life, then abnormal grain growth (AGG) may be the materials processing equivalent of sriracha sauce. Abnormally growing grains can be prismatic, dendritic, or practically any shape in between. When they grow at least an order of magnitude larger than their neighbors in the matrix—a state we call extreme AGG—we can examine the abnormal/matrix interface for clues to the underlying mechanism. Simulating AGG for various formulations of the grain boundary (GB) equation of motion, we show that anisotropies in GB mobility and energy leave a characteristic fingerprint in the abnormal/matrix boundary. Except in the case of prismatic growth, the morphological signature of most reported instances of AGG is consistent with a certain degree of GB mobility variability. Open questions remain, however, concerning the mechanism by which the corresponding growth advantage is established and maintained as the GBs of abnormal grains advance through the matrix. Expected final online publication date for the Annual Review of Materials Research, Volume 53 is July 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates. 
    more » « less
  3. Abstract This study uses high‐energy X‐ray diffraction microscopy of SrTiO3to identify correlations between grain boundary (GB) area changes and the motion direction of neighboring GBs to investigate interfacial energy minimization mechanisms during grain growth. The local GB area changes were measured near triple lines (TLs) to isolate the effects of neighboring GBs. These area changes were then correlated to the migration direction and curvature of the neighboring GBs present at the TL, providing an alternative metric associated with lateral expansion for describing GB migration. Additionally, this study extracted GB dihedral angles, which reflect the relative GB energy, to test whether low energy GBs replace high energy GBs (i.e., GB replacement mechanism) and, thus, can be used to predict a GB's migration direction. The majority of GBs did not exhibit local area changes reflective of the GB replacement mechanism, and the dihedral angles were not reliable indicators of GB motion. However, the expansion and shrinkage of GBs moving away from their center of curvature was more often consistent with the grain boundary replacement mechanism. These results suggest that growth for certain GB configurations is governed by relative energy differences while others are governed by curvature. 
    more » « less
  4. Molecular dynamics (MD) simulations are applied to study solute drag by curvature-driven grain boundaries (GBs) in Cu–Ag solid solution. Although lattice diffusion is frozen on the MD timescale, the GB significantly accelerates the solute diffusion and alters the state of short-range order in lattice regions swept by its motion. The accelerated diffusion produces a nonuniform redistribution of the solute atoms in the form of GB clusters enhancing the solute drag by the Zener pinning mechanism. This finding points to an important role of lateral GB diffusion in the solute drag effect. A 1.5 at.%Ag alloying reduces the GB free energy by 10–20% while reducing the GB mobility coefficients by more than an order of magnitude. Given the greater impact of alloying on the GB mobility than on the capillary driving force, kinetic stabilization of nanomaterials against grain growth is likely to be more effective than thermodynamic stabilization aiming to reduce the GB free energy. 
    more » « less
  5. The stabilization of supported nanoclusters is critical for different applications, including catalysis and plasmonics. Herein we investigate the impact of MoS 2 grain boundaries (GBs) on the nucleation and growth of Pt NCs. The optimum atomic structure of the metal clusters is obtained using an adaptive genetic algorithm that employs a hybrid approach based on atomistic force fields and density functional theory. Our findings show that GBs stabilize the NCs up to a cluster size of nearly ten atoms, and with larger clusters having a similar binding to the pristine system. Notably, Pt monomers are found to be attracted to GB cores achieving 60% more stabilization compared to the pristine surface. Furthermore, we show that the nucleation and growth of the metal seeds are facile with low kinetic barriers, which are of similar magnitude to the diffusion barriers of metals on the pristine surface. The findings highlight the need to engineer ultrasmall NCs to take advantage of enhanced stabilization imparted by the GB region, particularly to circumvent sintering behavior for high-temperature applications. 
    more » « less