Recognizing current and future needs for a diverse skilled workforce in mechanical engineering and the rising cost of higher education that acts as a barrier for many talented students with interests in engineering, the NSF funded S-STEM project at a state university focuses resources and research on financial support coupled with curricular and co-curricular activities designed to facilitate student degree attainment, career development, and employability in STEM-related jobs. This program has provided enhanced educational opportunities to more than 90 economically disadvantaged and academically talented undergraduate students in the Mechanical Engineering Department in the past eight years. It is expected that approximately 45 academically talented and financially needy students, including students transferring from community colleges to four-year engineering programs will receive scholarship support in the next 5 years, with an average amount of $6,000 per year for up to four years to earn degrees in mechanical engineering at the University of Maryland Baltimore County (UMBC). Through scholarships and supplemental support services, this program promotes full-time enrollment and will elevate the scholastic achievement of the S-STEM scholars, with a special emphasis on females and/or underrepresented minorities. It will provide a holistic and novel educational experience combining science, engineering, technology and medicine to improve student retention and future career prospects. The project builds on an established partnership between the state university and community colleges to improve and investigate the transfer experience of community college students to four-year programs, student retention at the university, and job placement and pathways to graduate school and employment. A mixed methods quantitative and qualitative research approach will examine the implementation and outcomes of proactive recruitment; selected high impact practices, such as orientation, one-to-one faculty mentoring, peer mentoring, and community building; participation by students in research-focused activities, such as research seminars and undergraduate experiences; and participation by students in career and professional development activities. In this paper, preliminary data will be presented discussing the attitudes and perceptions of the s-stem scholars and comparing students in scholarly programs and non-programmed situations. This research was supported by an NSF S-STEM grant (DUE-1742170).
more »
« less
STEM programs: encouraging an early start with engineering design
STEM programs: encouraging an early start with engineering designNancy Butler Songer, Associate Provost of STEM Education at the University of Utah, highlights the importance of introducing STEM programs to younger students. Fifty years ago, I was one of three girls (of fifty 11 and 12-year-olds) in the after-school Science Club (Figure 1). Equipped with my bicycle and a large butterfly net, my task was to gather and identify fifty different species of insects before school began again in the fall. Little did I know that this activity was a formative experience leading to a career in Science, Technology, Engineering, and Mathematics (STEM) Education. My experience as a twelve-year-old is consistent with a wealth of research indicating that pre-teen interest in STEM fields, including Engineering, is a strong predictor of future careers. Research studies indicate that to increase the number of students pursuing engineering and science as a career goal, we must increase activities with engineering as a fundamental component before students reach their teenage years (Sneider & Ravel, 2021).
more »
« less
- Award ID(s):
- 2125844
- PAR ID:
- 10569428
- Publisher / Repository:
- Open Access Government
- Date Published:
- Journal Name:
- Open Access Government
- Volume:
- 42
- Issue:
- 1
- ISSN:
- 2516-3817
- Page Range / eLocation ID:
- 272 to 273
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recognizing current and future needs for a diverse skilled workforce in mechanical engineering and the rising cost of higher education that acts as a barrier for many talented students with interests in engineering, the NSF funded S-STEM project at a state university focuses resources and research on financial support coupled with curricular and co-curricular activities designed to facilitate student degree attainment, career development, and employability in STEM-related jobs. This program has provided enhanced educational opportunities to more than 90 economically disadvantaged and academically talented undergraduate students in the Mechanical Engineering Department in the past eight years. It is expected that approximately 45 academically talented and financially needy students, including students transferring from community colleges to four-year engineering programs will receive scholarship support in the next 5 years, with an average amount of $6,000 per year for up to four years to earn degrees in mechanical engineering at the University of Maryland Baltimore County (UMBC). Through scholarships and supplemental support services, this program promotes full-time enrollment and will elevate the scholastic achievement of the S-STEM scholars, with a special emphasis on females and/or underrepresented minorities. It will provide a holistic and novel educational experience combining science, engineering, technology and medicine to improve student retention and future career prospects. The project builds on an established partnership between the state university and community colleges to improve and investigate the transfer experience of community college students to four-year programs, student retention at the university, and job placement and pathways to graduate school and employment. A mixed methods quantitative and qualitative research approach will examine the implementation and outcomes of proactive recruitment; selected high impact practices, such as orientation, one-to-one faculty mentoring, peer mentoring, and community building; participation by students in research-focused activities, such as research seminars and undergraduate experiences; and participation by students in career and professional development activities. In this paper, preliminary data will be presented discussing the attitudes and perceptions of the s-stem scholars and comparing students in scholarly programs and non-programmed situations. This research was supported by an NSF S-STEM grant (DUE-1742170).more » « less
-
Through an NSF S-STEM grant and institutional support, the STEM CAREERS (Career and Research Exploration to Enhance Retention in STEM) Program was created in 2018. This program provided scholarships and programming for high achieving lower-income students from rural and diverse backgrounds for N = 33 students over four years. A summer bridge, common first-year experience course, and interim trip on career exploration created a learning community for the cohort in their first year. Career exploration and networking opportunities introduced students to unimagined careers. Career preparation experiences were built into the remaining 3 years of the program as well as multi-layered mentoring. Mixed methods data collection included pre-post STEM career surveys, annual focus groups, and personal reflections. Some preliminary results include enhanced sense of belonging and strong support network, high placement into prestigious summer research programs and internships, and early admittance into dental school and graduate school.more » « less
-
Abstract This meta-analysis explores the impact of informal science education experiences (such as after-school programs, enrichment activities, etc.) on students' attitudes towards, and interest in, STEM disciplines (Science, Technology, Engineering, and Mathematics). The research addresses two primary questions: (1) What is the overall effect size of informal science learning experiences on students' attitudes towards and interest in STEM? (2) How do various moderating factors (e.g., types of informal learning experience, student grade level, academic subjects, etc.) impact student attitudes and interests in STEM? The studies included in this analysis were conducted within the United States in K-12 educational settings, over a span of thirty years (1992–2022). The findings indicate a positive association between informal science education programs and student interest in STEM. Moreover, the variability in these effects is contingent upon several moderating factors, including the nature of the informal science program, student grade level, STEM subjects, publication type, and publication year. Summarized effects of informal science education on STEM interest are delineated, and the implications for research, pedagogy, and practice are discussed.more » « less
-
McFarland, Jenny (Ed.)University science, technology, engineering, and math (STEM) summer bridge programs provide incoming STEM university students additional course work and preparation before they begin their studies. These programs are designed to reduce attrition and increase the diversity of students pursuing STEM majors and STEM career paths. A meta-analysis of 16 STEM summer bridge programs was conducted. Results showed that program participation had a medium-sized effect on first-year overall grade point average ( d = 0.34) and first-year university retention (Odds Ratio [ OR] = 1.747). Although this meta-analytic research reflects a limited amount of available quantitative academic data on summer STEM bridge programs, this study nonetheless provides important quantitative inroads into much-needed research on programs’ objective effectiveness. These results articulate the importance of thoughtful experimental design and how further research might guide STEM bridge program development to increase the success and retention of matriculating STEM students.more » « less
An official website of the United States government

