skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Closeness Centrality of Asymmetric Trees and Triangular Numbers
The combinatorial problem in this paper is motivated by a variant of the famous traveling salesman problem where the salesman must return to the starting point after each delivery. The total length of a delivery route is related to a metric known as closeness centrality. The closeness centrality of a vertex v in a graph G was defined in 1950 by Bavelas to be CC(v)=|V(G)|−1SD(v), where SD(v) is the sum of the distances from v to each of the other vertices (which is one-half of the total distance in the delivery route). We provide a real-world example involving the Metro Atlanta Rapid Transit Authority rail network and identify stations whose SD values are nearly identical, meaning they have a similar proximity to other stations in the network. We then consider theoretical aspects involving asymmetric trees. For integer values of k, we considered the asymmetric tree with paths of lengths k,2k,…,nk that are incident to a center vertex. We investigated trees with different values of k, and for k=1 and k=2, we established necessary and sufficient conditions for the existence of two vertices with identical SD values, which has a surprising connection to the triangular numbers. Additionally, we investigated asymmetric trees with paths incident to two vertices and found a sufficient condition for vertices to have equal SD values. This leads to new combinatorial proofs of identities arising from Pascal’s triangle.  more » « less
Award ID(s):
2243938
PAR ID:
10569559
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Mathematics
Volume:
12
Issue:
19
ISSN:
2227-7390
Page Range / eLocation ID:
2994
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract This paper introduces the notions of chained and semi-chained graphs. The chain of a graph, when existent, refines the notion of bipartivity and conveys important structural information. Also the notion of a center vertex $$v_c$$ v c is introduced. It is a vertex, whose sum of p powers of distances to all other vertices in the graph is minimal, where the distance between a pair of vertices $$\{v_c,v\}$$ { v c , v } is measured by the minimal number of edges that have to be traversed to go from $$v_c$$ v c to v . This concept extends the definition of closeness centrality. Applications in which the center node is important include information transmission and city planning. Algorithms for the identification of approximate central nodes are provided and computed examples are presented. 
    more » « less
  2. Morin, Pat; Oh, Eunjin (Ed.)
    Motivated by the problem of estimating bottleneck capacities on the Internet, we formulate and study the problem of vantage point selection. We are given a graph G = (V, E) whose edges E have unknown capacity values that are to be discovered. Probes from a vantage point, i.e, a vertex v ∈ V, along shortest paths from v to all other vertices, reveal bottleneck edge capacities along each path. Our goal is to select k vantage points from V that reveal the maximum number of bottleneck edge capacities. We consider both a non-adaptive setting where all k vantage points are selected before any bottleneck capacity is revealed, and an adaptive setting where each vantage point selection instantly reveals bottleneck capacities along all shortest paths starting from that point. In the non-adaptive setting, by considering a relaxed model where edge capacities are drawn from a random permutation (which still leaves the problem of maximizing the expected number of revealed edges NP-hard), we are able to give a 1-1/e approximate algorithm. In the adaptive setting we work with the least permissive model where edge capacities are arbitrarily fixed but unknown. We compare with the best solution for the particular input instance (i.e. by enumerating all choices of k tuples), and provide both lower bounds on instance optimal approximation algorithms and upper bounds for trees and planar graphs. 
    more » « less
  3. Current flow closeness centrality (CFCC) has a better discriminating ability than the ordinary closeness centrality based on shortest paths. In this paper, we extend this notion to a group of vertices in a weighted graph, and then study the problem of finding a subset S of k vertices to maximize its CFCC C(S), both theoretically and experimentally. We show that the problem is NP-hard, but propose two greedy algorithms for minimizing the reciprocal of C(S) with provable guarantees using the monotoncity and supermodularity. The first is a deterministic algorithm with an approximation factor (1−kk−1⋅1e) and cubic running time; while the second is a randomized algorithm with a (1−kk−1⋅1e−ϵ)-approximation and nearly-linear running time for any ϵ>0. Extensive experiments on model and real networks demonstrate that our algorithms are effective and efficient, with the second algorithm being scalable to massive networks with more than a million vertices. 
    more » « less
  4. null (Ed.)
    Vehicle routing problems are a broad class of combinatorial optimization problems that can be formulated as the problem of finding a tour in a weighted graph that optimizes some function of the visited vertices. For instance, a canonical and extensively studied vehicle routing problem is the orienteering problem where the goal is to find a tour that maximizes the number of vertices visited by a given deadline. In this paper, we consider the computational tractability of a well-known generalization of the orienteering problem called the Orient-MTW problem. The input to Orient-MTW consists of a weighted graph G(V, E) where for each vertex v ∊ V we are given a set of time instants Tv ⊆ [T], and a source vertex s. A tour starting at s is said to visit a vertex v if it transits through v at any time in the set Tv. The goal is to find a tour starting at the source vertex that maximizes the number of vertices visited. It is known that this problem admits a quasi-polynomial time O(log OPT)-approximation ratio where OPT is the optimal solution value but until now no hardness better than an APX-hardness was known for this problem. Our main result is an -hardness for this problem that holds even when the underlying graph G is an undirected tree. This is the first super-constant hardness result for the Orient-MTW problem. The starting point for our result is the hardness of the SetCover problem which is known to hold on instances with a special structure. We exploit this special structure of the hard SetCover instances to first obtain a new proof of the APX-hardness result for Orient-MTW that holds even on trees of depth 2. We then recursively amplify this constant factor hardness to an -hardness, while keeping the resulting topology to be a tree. Our amplified hardness proof crucially utilizes a delicate concavity property which shows that in our encoding of SetCover instances as instances of the Orient-MTW problem, whenever the optimal cost for SetCover instance is large, any tour, no matter how it allocates its time across different sub-trees, can not visit too many vertices overall. We believe that this reduction template may also prove useful in showing hardness of other vehicle routing problems. 
    more » « less
  5. Albert, Michael; Billington, Elizabeth J (Ed.)
    A k-dispersed labelling of a graph G on n vertices is a labelling of the vertices of G by the integers 1,...,n such that d(i,i+1) ≥ k for 1 ≤ i ≤ n − 1. Here DL(G) denotes the maximum value of k such that G has a k-dispersed labelling. In this paper, we study upper and lower bounds on DL(G). Computing DL(G) is NP-hard. However, we determine the exact value of DL(G) for cycles, paths, grids, hypercubes and complete binary trees. We also give a product construction and we prove a degree-based bound. 
    more » « less