skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Between carbide and nitride MAX phases: sol–gel assisted synthesis and characterization of the carbonitride phase Cr 2 GaC 1−x N x
The combination of a sol–gel precursor approach and microwave heating leads to a hitherto unknown MAX phase Cr2GaC1−xNx. Magnetic measurements reveal that the susceptibility depends on the nitrogen amount on the X-site.  more » « less
Award ID(s):
2143982
PAR ID:
10569634
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Journal of Materials Chemistry C
Date Published:
Journal Name:
Journal of Materials Chemistry C
Volume:
12
Issue:
21
ISSN:
2050-7526
Page Range / eLocation ID:
7552 to 7561
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The highest ambient‐pressure Tc among binary compounds is 40 K (MgB2). Higher Tc is achieved in high‐pressure hydrides or multielement cuprates. Alternatively, are explored superconducting properties of binary, metastable sub‐oxides, that may emerge under extremely low oxygen partial pressure. The emphasis is on the rock‐salt structure, which is known to promote superconductivity, and exploring AlO, ScO, TiO, and NbO. Dynamic lattice stability is achieved by introducing metal and oxygen vacancies in the fashion of Nb1−xO1−x‐type structure (x = ¼). The electron‐phonon (e‐ph) coupling is remarkably large in Al1−xO1−xand Ti1−xO1−x(λ ≈ 2 at x = ¼), with Tc ≈ 35 K according to the Allen–Dynes equation. Significantly, the coupling strength is comparable to that in high‐pressure hydrides, yet, in contrast to hydrides and MgB2, the coupling is largely driven by low frequency phonons. Sc1−xO1−xand Nb1−xO1−xshow significantly smaller λ and Tc. Further, hydrogen intercalation to boost λ and Tc is investigated. Only Ti1−x(O1−xHx) and Nb1−x(O1−xHx) are dynamically stable upon intercalation, where H, respectively, decreases and increases Tc. The effect of H doping on electronic structure and Tc is discussed. Altogether, the study suggests that metal sub‐oxides are promising compounds to achieve strong e‐ph coupling at ambient pressure. 
    more » « less
  2. Secondary‐ion mass spectrometry (SIMS) is used to determine impurity concentrations of carbon and oxygen in two scandium‐containing nitride semiconductor multilayer heterostructures: ScxGa1−xN/GaN and ScxAl1−xN/AlN grown by molecular beam epitaxy (MBE). In the ScxGa1−xN/GaN heterostructure grown in metal‐rich conditions on GaN–SiC template substrates with Sc contents up to 28 at%, the oxygen concentration is found to be below 1 × 1019 cm−3, with an increase directly correlated with the scandium content. In the ScxAl1−xN–AlN heterostructure grown in nitrogen‐rich conditions on AlN–Al2O3template substrates with Sc contents up to 26 at%, the oxygen concentration is found to be between 1019and 1021 cm−3, again directly correlated with the Sc content. The increase in oxygen and carbon takes place during the deposition of scandium‐alloyed layers. 
    more » « less
  3. Abstract Single crystals of disordered Mn4–xCrxAl11have been synthesized via the flux method. EDS on several crystals of various sizes and shapes revealed an average molar ratio of 17:9:74 for Mn:Cr:Al, while X-ray diffraction on three different crystals yield compositions Mn2.26Cr1.74Al11(Mn4–xCrxAl11,x= 1.74), Mn0.83Cr3.17Al11, and Mn1.07Cr2.93Al11. This compound crystallizes in space groupP–1, isostructural with both Mn4Al11and Cr4Al11. Magnetic measurements on several crystals show that this disordered compound is ferrimagnetic with a low effective moment ofμeff≈1.012±0.004 μB/f.u. and a non-reachable transition temperature. DFT calculations display opening of a bandgap in the spin-up channel near the Fermi level with increasing Cr content, an indication of half-metallicity. 
    more » « less
  4. Abstract Synthesizing solids in molten fluxes enables the rapid diffusion of soluble species at temperatures lower than in solid‐state reactions, leading to crystal formation of kinetically stable compounds. In this study, we demonstrate the effectiveness of mixed hydroxide and halide fluxes in synthesizing complex Sr/Ag/Se in mixed LiOH/LiCl. We have accessed a series of two‐dimensional Sr(Ag1−xLix)2Se2layered phases. With increased LiOH/LiCl ratio or reaction temperature, Li partially substituted Ag to form solid solutions of Sr(Ag1−xLix)2Se2withxup to 0.45. In addition, a new type of intergrowth compound [Sr3Se2][(Ag1−xLix)2Se2] was synthesized upon further reaction of Sr(Ag1−xLix)2Se2with SrSe. Both Sr(Ag1−xLix)2Se2and [Sr3Se2][(Ag1−xLix)2Se2] exhibit a direct band gap, which increases with increasing Li substitution (x). Therefore, the band gap of Sr(Ag1−xLix)2Se2can be precisely tuned via fine‐tuningxthat is controlled by only the flux ratio and temperature. 
    more » « less
  5. We synthesized a series of Zr1−xTixS3solid solutions (0 ≤x≤ 1)viaa direct reaction between Zr–Ti alloys and sulfur vapor at 600 °C. These solid solutions have a tunable bandgap in the 1–2 eV range that linearly increases with the Zr content. 
    more » « less