skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2143982

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Microwave heating is an intriguing method for the synthesis of inorganic solids offering a variety of advantages over conventional furnace heating, such as fast heating and cooling rates as well as volumetric and selective heating of precursors. However, there are many open questions regarding this “black‐box” process, and insights into the effect of microwave radiation on different types of solids are generally missing. In situ Raman spectroscopy is a powerful technique to unravel chemical transformations and identify intermediate species during microwave solid‐state syntheses. A major challenge is the temperature measurement under microwave conditions because (metallic) thermocouples cannot be used and optical pyrometry has significant drawbacks. In contrast, Raman thermometry is a viable method that relies on the temperature‐induced shift of Raman signals. Here, we use this method to estimate the temperature during microwave heating of a model system (titania) that undergoes a phase transition at temperatures >800°C. The estimation is derived from a flexible double exponential calibration function applied to Raman spectroscopic peak shifts in the temperature‐resolved furnace heating data, which was found to describe two titania modes (one anatase and one rutile) extremely well. Based on a detailed error and uncertainty analysis, we suggest options to further optimize Raman thermometry for use in high‐temperature microwave heating conditions. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract MAX phases are layered solids with unique properties combining characteristics of ceramics and metals. MXenes are their two‐dimensional siblings that can be synthesized as van der Waals‐stacked and multi‐/single‐layer nanosheets, which possess chemical and physical properties that make them interesting for a plethora of applications. Both families of materials are highly versatile in terms of their chemical composition and theoretical studies suggest that many more members are stable and can be synthesized. This is very intriguing because new combinations of elements, and potentially new structures, can lead to further (tunable) properties. In this review, we focus on the synthesis science (including non‐conventional approaches) and structure of members less investigated, namely compounds with more exoticM‐,A‐, andX‐elements, for example nitrides and (carbo)nitrides, and the related family of MAB phases. 
    more » « less
  3. Abstract Microwave heating methods offer unique advantages in preparations of inorganic solids due to the high heating rates, potentially selective heating, and time/energy reductions. Understanding of these enhancements as well as involved mechanisms is poor due to the lack of available and easily applicable in situ monitoring methods, particularly for samples in the solid state. Existing in situ studies typically rely on access to beamline facilities as well as custom‐built microwave systems, which is in the best case inconvenient and in the worst case not achievable. In situ Raman spectroscopy is an ideal technique as it provides rapid and unambiguous phase identification by a noncontact method. Further, the instrument components are simple and compact, facilitating use in the typical synthetic laboratory. Only a few reports on using Raman spectroscopy for in situ measurements during microwave heating exist, and they all utilize specialized custom reactor setups. In this work, a new Raman measurement system designed to observe inorganic transformations in situ that is readily deployable in a standard, commercially available laboratory scale microwave reactor is described. As a simple demonstration, the anatase‐to‐rutile phase transition in TiO2is monitored under both microwave and conventional furnace heating. The excellent time resolution achieved demonstrates the utility of the system in understanding microwave‐assisted methods for the preparation of inorganic compounds. The simplicity will encourage integration by the non‐specialist to understand microwave heating for synthetic preparations and promote wider application of the technique. 
    more » « less
  4. Free, publicly-accessible full text available January 17, 2026
  5. Carbonaceous Cr2GaC microspheres are synthesized by means of sol–gel chemistry and exhibit high BET surface area after pyrolysis. 
    more » « less
  6. The combination of a sol–gel precursor approach and microwave heating leads to a hitherto unknown MAX phase Cr2GaC1−xNx. Magnetic measurements reveal that the susceptibility depends on the nitrogen amount on the X-site. 
    more » « less