skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ferrimagnetism and Half-metallicity in Cr-substituted Mn 4–x Cr x Al 11
Abstract Single crystals of disordered Mn4–xCrxAl11have been synthesized via the flux method. EDS on several crystals of various sizes and shapes revealed an average molar ratio of 17:9:74 for Mn:Cr:Al, while X-ray diffraction on three different crystals yield compositions Mn2.26Cr1.74Al11(Mn4–xCrxAl11,x= 1.74), Mn0.83Cr3.17Al11, and Mn1.07Cr2.93Al11. This compound crystallizes in space groupP–1, isostructural with both Mn4Al11and Cr4Al11. Magnetic measurements on several crystals show that this disordered compound is ferrimagnetic with a low effective moment ofμeff≈1.012±0.004 μB/f.u. and a non-reachable transition temperature. DFT calculations display opening of a bandgap in the spin-up channel near the Fermi level with increasing Cr content, an indication of half-metallicity.  more » « less
Award ID(s):
2047251 2328830
PAR ID:
10590476
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics: Condensed Matter
ISSN:
0953-8984
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Abundant transition metal borides are emerging as substitute electrochemical hydrogen evolution reaction (HER) catalysts for noble metals. Herein, an unusual canonic‐like behavior of theclattice parameter in the AlB2‐type solid solution Cr1–xMoxB2(x= 0, 0.25, 0.4, 0.5, 0.6, 0.75, 1) and its direct correlation to the HER activity in 0.5 M H2SO4solution are reported. The activity increases with increasingx, reaching its maximum atx= 0.6 before decreasing again. At high current densities, Cr0.4Mo0.6B2outperforms Pt/C, as it needs 180 mV less overpotential to drive an 800 mA cm−2current density. Cr0.4Mo0.6B2has excellent long‐term stability and durability showing no significant activity loss after 5000 cycles and 25 h of operation in acid. First‐principles calculations have correctly reproduced the nonlinear dependence of theclattice parameter and have shown that the mixed metal/B layers, such as (110), promote hydrogen evolution more efficiently forx= 0.6, supporting the experimental results. 
    more » « less
  2. Abstract Antiferromagnetic van der Waals‐typeM2P2X6compounds provide a versatile material platform for studying 2D magnetism and relevant phenomena. Establishing ferromagnetism in 2D materials is technologically valuable. Though magnetism is generally tunable via a chemical way, it is challenging to induce ferromagnetism with isovalent chalcogen and bimetallic substitutions inM2P2X6. Here, we report co‐substitution of Cu1+and Cr3+for Ni2+in Ni2P2S6, creating CuxNi2(1‐x)CrxP2S6medium‐entropy alloys spanning a full substitution range (x= 0 to 1). Such substitution strategy leads to a unique evolution in crystal structure and magnetic phases that are distinct from traditional isovalent bimetallic doping, with Cu and Cr co‐substitution enhancing ferromagnetic correlations and generating a weak ferromagnetic phase in intermediate compositions. This aliovalent substitution strategy offers a universal approach for tuning layered magnetism in antiferromagnetic systems, which along with the potential for light‐matter interaction and high‐temperature ferroelectricity, can enable multifunctional device applications. 
    more » « less
  3. Abstract Control of surface functionalization of MXenes holds great potential, and in particular, may lead to tuning of magnetic and electronic order in the recently reported magnetic Cr2TiC2Tx. Here, vacuum annealing experiments of Cr2TiC2Txare reported with in situ electron energy loss spectroscopy and novel in situ Cr K‐edge extended energy loss fine structure analysis, which directly tracks the evolution of the MXene surface coordination environment. These in situ probes are accompanied by benchmarking synchrotron X‐ray absorption fine structure measurements and density functional theory calculations. With the etching method used here, the MXene has an initial termination chemistry of Cr2TiC2O1.3F0.8. Annealing to 600 °C results in the complete loss of F, but O termination is thermally stable up to (at least) 700 °C. These findings demonstrate thermal control of F termination in Cr2TiC2Txand offer a first step toward termination engineering this MXene for magnetic applications. Moreover, this work demonstrates high energy electron spectroscopy as a powerful approach for surface characterization in 2D materials. 
    more » « less
  4. Motivated by the complex structure and properties of giant unit cell intermetallic compounds, a new isostructural Fe analogue of the Dy117Co57Sn112structure type was synthesized. Single crystals of Dy122Fe55Sn101were grown at 1260 °C via a Dy–Fe eutectoid flux. The Fe analogue also adopts the space groupFm3mwith lattice parametersa= 29.914(9) Å,V= 26769(23) Å3, andZ= 4. Dy122Fe55Sn101has a large cell volume, structural complexity, and consists of seven Dy, eight Fe, and ten Sn unique crystallographic sites. There are fifteen fully occupied atomic positions, three unique pairs of alternating atomic positions with positional disorder, and seven partially occupied atomic sites. Within this complex unit cell, only approximately half the unique atomic positions are fully occupied with the remainder of the atoms either positionally or occupationally disordered. X‐ray photoelectron spectroscopy indicates that the compound contains Dy3+, Fe0, Fe2+, Sn0, and Sn4+
    more » « less
  5. The combination of a sol–gel precursor approach and microwave heating leads to a hitherto unknown MAX phase Cr2GaC1−xNx. Magnetic measurements reveal that the susceptibility depends on the nitrogen amount on the X-site. 
    more » « less