skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interpreting models interpreting brain dynamics
Abstract Brain dynamics are highly complex and yet hold the key to understanding brain function and dysfunction. The dynamics captured by resting-state functional magnetic resonance imaging data are noisy, high-dimensional, and not readily interpretable. The typical approach of reducing this data to low-dimensional features and focusing on the most predictive features comes with strong assumptions and can miss essential aspects of the underlying dynamics. In contrast, introspection of discriminatively trained deep learning models may uncover disorder-relevant elements of the signal at the level of individual time points and spatial locations. Yet, the difficulty of reliable training on high-dimensional low sample size datasets and the unclear relevance of the resulting predictive markers prevent the widespread use of deep learning in functional neuroimaging. In this work, we introduce a deep learning framework to learn from high-dimensional dynamical data while maintaining stable, ecologically valid interpretations. Results successfully demonstrate that the proposed framework enables learning the dynamics of resting-state fMRI directly from small data and capturing compact, stable interpretations of features predictive of function and dysfunction.  more » « less
Award ID(s):
2112455
PAR ID:
10569675
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Gradient mapping is an important technique to summarize high dimensional biological features as low dimensional manifold representations in exploring brain structure-function relationships at various levels of the cerebral cortex. While recent studies have characterized the major gradients of functional connectivity in several brain structures using this technique, very few have systematically examined the correspondence of such gradients across structures under a common systems-level framework. Using resting-state functional magnetic resonance imaging, here we show that the organizing principles of the isocortex, and those of the cerebellum and hippocampus in relation to the isocortex, can be described using two common functional gradients. We suggest that the similarity in functional connectivity gradients across these structures can be meaningfully interpreted within a common computational framework based on the principles of predictive processing. The present results, and the specific hypotheses that they suggest, represent an important step toward an integrative account of brain function. 
    more » « less
  2. Hyperdimensional (HD) computing is a brain-inspired form of computing based on the manipulation of high-dimensional vectors. Offering robust data representation and relatively fast learning, HD computing is a promising candidate for energy-efficient classification of biological signals. This paper describes the application of HD computing-based machine learning to the classification of biological gender from resting-state and task functional magnetic resonance imaging (fMRI) from the publicly available Human Connectome Project (HCP). The developed HD algorithm derives predictive features through mean dynamic functional connectivity (dFC) analysis. Record encoding is employed to map features onto hyperdimensional space. Utilizing adaptive retraining techniques, the HD computing-based classifier achieves an average biological gender classification accuracy of 87%, as compared to 84% achieved by edge entropy measure. 
    more » « less
  3. We present a novel deep learning framework to automatically compute independently salient networks in the brain that characterize the underlying changes in the brain in association with clinically observed assessments. Unsupervised approaches for high-dimensional neuroimaging data focus on computing low-dimensional brain components for subsequent analysis, while supervised learning approaches aim for predictive performance and yielding a single list of associative feature importance, thus making it hard to interpret at the level of brain subsystems. Our approach integrates the goals of decomposition into lower dimensional subspaces and, identifying salient brain subsystems into a single automated framework. We first train a convolutional neural network on structural brain features to predict clinical assessments, followed by a multi-step decomposition in the saliency space to compute salient brain networks that intrinsically characterize the brain changes associated with the assessment. Through a repeated training procedure on an Alzheimer’s disease (AD) dataset, we show that our method effectively computes AD-related salient brain subsystems directly from high-dimensional neuroimaging data, while maintaining predictive performance. Such approaches are crucial for data-driven biomarker development for brain disorders. 
    more » « less
  4. Resting-state functional magnetic resonance imaging (rs-fMRI) is a noninvasive technique pivotal for understanding human neural mechanisms of intricate cognitive processes. Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest, or dynamic functional connectivity matrices with a sliding window approach. These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand. While deep learning has gained substantial popularity for modeling complex relational data, its application to uncovering the spatiotemporal dynamics of the brain is still limited. In this study we propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series and employs a specialized graph neural network for the final classification. Our model, DSAM, leverages temporal causal convolutional networks to capture the temporal dynamics in both low- and high-level feature representations, a temporal attention unit to identify important time points, a self-attention unit to construct the goal-specific connectivity matrix, and a novel variant of graph neural network to capture the spatial dynamics for downstream classification. To validate our approach, we conducted experiments on the Human Connectome Project dataset with 1075 samples to build and interpret the model for the classification of sex group, and the Adolescent Brain Cognitive Development Dataset with 8520 samples for independent testing. Compared our proposed framework with other state-of-art models, results suggested this novel approach goes beyond the assumption of a fixed connectivity matrix, and provides evidence of goal-specific brain connectivity patterns, which opens up potential to gain deeper insights into how the human brain adapts its functional connectivity specific to the task at hand. 
    more » « less
  5. Abstract Sleep is critical to a variety of cognitive functions and insufficient sleep can have negative consequences for mood and behavior across the lifespan. An important open question is how sleep duration is related to functional brain organization which may in turn impact cognition. To characterize the functional brain networks related to sleep across youth and young adulthood, we analyzed data from the publicly available Human Connectome Project (HCP) dataset, which includesn‐back task‐based and resting‐state fMRI data from adults aged 22–35 years (taskn = 896; restn = 898). We applied connectome‐based predictive modeling (CPM) to predict participants' mean sleep duration from their functional connectivity patterns. Models trained and tested using 10‐fold cross‐validation predicted self‐reported average sleep duration for the past month fromn‐back task and resting‐state connectivity patterns. We replicated this finding in data from the 2‐year follow‐up study session of the Adolescent Brain Cognitive Development (ABCD) Study, which also includesn‐back task and resting‐state fMRI for adolescents aged 11–12 years (taskn = 786; restn = 1274) as well as Fitbit data reflecting average sleep duration per night over an average duration of 23.97 days. CPMs trained and tested with 10‐fold cross‐validation again predicted sleep duration fromn‐back task and resting‐state functional connectivity patterns. Furthermore, demonstrating that predictive models are robust across independent datasets, CPMs trained on rest data from the HCP sample successfully generalized to predict sleep duration in the ABCD Study sample and vice versa. Thus, common resting‐state functional brain connectivity patterns reflect sleep duration in youth and young adults. 
    more » « less