skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhanced magnon thermal transport in yttrium-doped spin ladder compounds Sr14−xYxCu24O41
Magnons are quasiparticles of spin waves, carrying both thermal energy and spin information. Controlling magnon transport processes is critical for developing innovative magnonic devices used in data processing and thermal management applications in microelectronics. The spin ladder compound Sr14Cu24O41 with large magnon thermal conductivity offers a valuable platform for investigating magnon transport. However, there are limited studies on enhancing its magnon thermal conductivity. Herein, we report the modification of magnon thermal transport through partial substitution of strontium with yttrium (Y) in both polycrystalline and single crystalline Sr14−xYxCu24O41. At room temperature, the lightly Y-doped polycrystalline sample exhibits 430% enhancement in thermal conductivity compared to the undoped sample. This large enhancement can be attributed to reduced magnon-hole scattering, as confirmed by the Seebeck coefficient measurement. Further increasing the doping level results in negligible change and eventually suppression of magnon thermal transport due to increased magnon-defect and magnon-hole scattering. By minimizing defect and boundary scattering, the single crystal sample with x = 2 demonstrates a further enhanced room-temperature magnon thermal conductivity of 19Wm−1K−1, which is more than ten times larger than that of the undoped polycrystalline material. This study reveals the interplay between magnon-hole scattering and magnon-defect scattering in modifying magnon thermal transport, providing valuable insights into the control of magnon transport properties in magnetic materials.  more » « less
Award ID(s):
2144328 2308817
PAR ID:
10569700
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
136
Issue:
4
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Spin excitations, including magnons and spinons, can carry thermal energy and spin information. Studying spin‐mediated thermal transport is crucial for spin caloritronics, enabling efficient heat dissipation in microelectronics and advanced thermoelectric applications. However, designing quantum materials with controllable spin transport is challenging. Here, highly textured spin‐chain compound Ca2CuO3is synthesized using a solvent‐cast cold pressing technique, aligning 2D nanostructures with spin chains perpendicular to the pressing direction. The sample exhibits high thermal conductivity anisotropy and an excellent room‐temperature thermal conductivity of 12 ± 0.7 W m−1K−1, surpassing all polycrystalline quantum magnets. Such a high value is attributed to the significant spin‐mediated thermal conductivity of 10 ± 1 W m−1K−1, the highest reported among all polycrystalline quantum materials. Analysis through a 1D kinetic model suggests that near room‐temperature, spinon thermal transport is dominated by coupling with high‐frequency phonons, while extrinsic spinon‐defect scattering is negligible. Additionally, this method is used to prepare textured La2CuO4, exhibiting highly anisotropic magnon thermal transport and demonstrating its broad applicability. A distinct role of defect scattering in spin‐mediated thermal transport is observed in two spin systems. These findings open new avenues for designing quantum materials with controlled spin transport for thermal management and energy conversion. 
    more » « less
  2. Thermoelectric materials, capable of converting temperature gradients into electrical power, have been traditionally limited by a trade‐off between thermopower and electrical conductivity. This study introduces a novel, broadly applicable approach that enhances both the spin‐driven thermopower and the thermoelectric figure‐of‐merit (zT) without compromising electrical conductivity, using temperature‐driven spin crossover. Our approach, supported by both theoretical and experimental evidence, is demonstrated through a case study of chromium doped‐manganese telluride, but is not confined to this material and can be extended to other magnetic materials. By introducing dopants to create a high crystal field and exploiting the entropy changes associated with temperature‐driven spin crossover, we achieved a significant increase in thermopower, by approximately 136 μV K−1, representing more than a 200% enhancement at elevated temperatures within the paramagnetic domain. Our exploration of the bipolar semiconducting nature of these materials reveals that suppressing bipolar magnon/paramagnon‐drag thermopower is key to understanding and utilizing spin crossover‐driven thermopower. These findings, validated by inelastic neutron scattering, X‐ray photoemission spectroscopy, thermal transport, and energy conversion measurements, shed light on crucial material design parameters. We provide a comprehensive framework that analyzes the interplay between spin entropy, hopping transport, and magnon/paramagnon lifetimes, paving the way for the development of high‐performance spin‐driven thermoelectric materials. 
    more » « less
  3. Carbon nanotubes (CNTs) are quasi-one dimensional nanostructures that display both high thermal conductivity for potential thermal management applications and intriguing low-dimensional phonon transport phenomena. In comparison to the advances made in the theoretical calculation of the lattice thermal conductivity of CNTs, thermal transport measurements of CNTs have been limited by either the poor temperature sensitivity of Raman thermometry technique or the presence of contact thermal resistance errors in sensitive two-probe resistance thermometry measurements. Here we report advances in a multi-probe measurement of the intrinsic thermal conductivity of individual multi-walled CNT samples that are transferred from the growth substrate onto the measurement device. The sample-thermometer thermal interface resistance is directly measured by this multi-probe method and used to model the temperature distribution along the contacted sample segment. The detailed temperature profile helps to eliminate the contact thermal resistance error in the obtained thermal conductivity of the suspended sample segment. A differential electro-thermal bridge measurement method is established to enhance the signal-to-noise ratio and reduce the measurement uncertainty by over 40%. The obtained thermal resistances of multiple suspended segments of the same MWCNT samples increase nearly linearly with increasing length, revealing diffusive phonon transport as a result of phonon-defect scattering in these MWCNT samples. The measured thermal conductivity increases with temperature and reaches up to 390 ± 20 W m-1 K-1 at room temperature for a 9-walled MWCNT. Theoretical analysis of the measurement results suggests submicron phonon mean free paths due to extrinsic phonon scattering by extended defects such as grain boundaries. The obtained thermal conductivity is decreased by a factor of 3 upon electron beam damage and surface contamination of the CNT sample. 
    more » « less
  4. null (Ed.)
    Abstract Crystalline solids exhibiting glass-like thermal conductivity have attracted substantial attention both for fundamental interest and applications such as thermoelectrics. In most crystals, the competition of phonon scattering by anharmonic interactions and crystalline imperfections leads to a non-monotonic trend of thermal conductivity with temperature. Defect-free crystals that exhibit the glassy trend of low thermal conductivity with a monotonic increase with temperature are desirable because they are intrinsically thermally insulating while retaining useful properties of perfect crystals. However, this behavior is rare, and its microscopic origin remains unclear. Here, we report the observation of ultralow and glass-like thermal conductivity in a hexagonal perovskite chalcogenide single crystal, BaTiS 3 , despite its highly symmetric and simple primitive cell. Elastic and inelastic scattering measurements reveal the quantum mechanical origin of this unusual trend. A two-level atomic tunneling system exists in a shallow double-well potential of the Ti atom and is of sufficiently high frequency to scatter heat-carrying phonons up to room temperature. While atomic tunneling has been invoked to explain the low-temperature thermal conductivity of solids for decades, our study establishes the presence of sub-THz frequency tunneling systems even in high-quality, electrically insulating single crystals, leading to anomalous transport properties well above cryogenic temperatures. 
    more » « less
  5. Utilizing first-principles calculations combined with phonon Boltzmann transport theory up to fourth-order anharmonicity, we systematically investigate the thermal transport properties of the biphenylene network [BPN, recently synthesized experimentally by Fan et al. , Science , 2021, 372 , 852–856] and hydrogenated BPN (HBPN). The calculations show that four-phonon scattering significantly affects the lattice thermal conductivity ( κ ) of BPN. At room temperature, the κ of BPN is reduced from 582.32 (1257.07) W m −1 K −1 to 309.56 (539.88) W m −1 K −1 along the x ( y ) direction after considering the four-phonon scattering. Moreover, our results demonstrate that the thermal transport in BPN could also be greatly suppressed by hydrogenation, where the κ of HBPN along the x ( y ) direction is merely 16.62% (10.14%) of that of pristine BPN at 300 K. The mechanism causing such an obvious decrease of κ of HBPN is identified to be due to the enhanced phonon scattering rate and reduced group velocity, which is further revealed by the increased scattering phase space and weakened C–C bond. The results presented in this work shed light on the intrinsic thermal transport features of BPN and HBPN, which will help us to understand the phonon transport processes and pave the way for their future developments in the thermal field. 
    more » « less