skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 14, 2026

Title: A 3D bioprinted adhesive tissue engineering scaffold to repair ischemic heart injury
The design and fabrication of 3D printed ATESs within vivoadhesion and application potential, shape design capability, as well as accessible and convenient fabrication and application process.  more » « less
Award ID(s):
2044657
PAR ID:
10569782
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Biomaterials Science
Volume:
13
Issue:
2
ISSN:
2047-4830
Page Range / eLocation ID:
506 to 522
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The non-Hermitian models, which are symmetric under parity (P) and time-reversal (T) operators, are the cornerstone for the fabrication of new ultra-sensitive optoelectronic devices. However, providing the gain in such systems usually demands precise control of nonlinear processes, limiting their application. In this paper, to bypass this obstacle, we introduce a class of time-dependent non-Hermitian Hamiltonians (not necessarily Floquet) that can describe a two-level system with temporally modulated on-site potential and couplings. We show that implementing an appropriate non-Unitary gauge transformation converts the original system to an effective one with a balanced gain and loss. This will allow us to derive the evolution of states analytically. Our proposed class of Hamiltonians can be employed in different platforms such as electronic circuits, acoustics, and photonics to design structures with hiddenPT-symmetry potentially without imaginary onsite amplification and absorption mechanism to obtain an exceptional point. 
    more » « less
  2. Abstract Heterogeneously integrated hybrid photonic crystal cavities enable strong light–matter interactions with solid state, optically addressable quantum memories. A key challenge to realizing high quality factor (Q) hybrid photonic crystals is the reduced index contrast on the substrate compared to suspended devices in air. This challenge is particularly acute for color centers in diamond because of diamond’s high refractive index, which leads to increased scattering loss into the substrate. Here, we develop a design methodology for hybrid photonic crystals utilizing a detailed understanding of substrate-mediated loss, which incorporates sensitivity to fabrication errors as a critical parameter. Using this methodology, we design robust, high-Q, GaAs-on-diamond photonic crystal cavities, and by optimizing our fabrication procedure, we experimentally realize cavities withQapproaching 30,000 at a resonance wavelength of 955 nm. 
    more » « less
  3. Abstract The precise deployment of functional payloads to plant tissues is a new approach to help advance the fundamental understanding of plant biology and accelerate plant engineering. Here, the design of a silk‐based biomaterial is reported to fabricate a microneedle‐like device, dubbed “phytoinjector,” capable of delivering a variety of payloads ranging from small molecules to large proteins into specific loci of various plant tissues. It is shown that phytoinjector can be used to deliver payloads into plant vasculature to study material transport in xylem and phloem and to perform complex biochemical reactions in situ. In another application, it is demonstratedAgrobacterium‐mediated gene transfer to shoot apical meristem (SAM) and leaves at various stages of growth. Tuning of the material composition enables the fabrication of another device, dubbed “phytosampler,” which is used to precisely sample plant sap. The design of plant‐specific biomaterials to fabricate devices for drug deliveryin plantaopens new avenues to enhance plant resistance to biotic and abiotic stresses, provides new tools for diagnostics, and enables new opportunities in plant engineering. 
    more » « less
  4. Abstract The outsourcing of integrated circuit (IC) fabrication raises concerns of reverse-engineering, piracy, and overproduction of high-value intellectual property (IP). Logic locking was developed to address this by adding logic gates to a design to a chip’s functionality during fabrication. However, recent advances have revealed that logic locking is susceptible to physical probing attacks, such as electro-optical frequency mapping (EOFM). In this work, we proposeAdjoining Gates, a novel logic locking enhancement that places auxiliary logic gates near gates that leak key information when probed to obscure them, thereby mitigating EOFM-style attacks. To implement Adjoining Gates, we developed an open-source security verification and design automation algorithm that detects EOFM key leakage during placement and inserts Adjoining Gates in a design. Our evaluation shows that our proposed approach identified and mitigated all EOFM-extractable key leakage across 16 benchmarks of varying sizes, locking techniques, and probe resolutions with a 4.15% average gate count overhead. 
    more » « less
  5. Abstract Microfluidic‐based wearable electrochemical sensors represent a transformative approach to non‐invasive, real‐time health monitoring through continuous biochemical analysis of body fluids such as sweat, saliva, and interstitial fluid. These systems offer significant potential for personalized healthcare and disease management by enabling real‐time detection of key biomarkers. However, challenges remain in optimizing microfluidic channel design, ensuring consistent biofluid collection, balancing high‐resolution fabrication with scalability, integrating flexible biocompatible materials, and establishing standardized validation protocols. This review explores advancements in microfluidic design, fabrication techniques, and integrated electrochemical sensors that have improved sensitivity, selectivity, and durability. Conventional photolithography, 3D printing, and laser‐based fabrication methods are compared, highlighting their mechanisms, advantages, and trade‐offs in microfluidic channel production. The application section summarizes strategies to overcome variability in biofluid composition, sensor drift, and user adaptability through innovative solutions such as hybrid material integration, self‐powered systems, and AI‐assisted data analysis. By analyzing recent breakthroughs, this paper outlines critical pathways for expanding wearable sensor technologies and achieving seamless operation in diverse real‐world settings, paving the way for a new era of digital health. 
    more » « less