ABSTRACT Observing 3D magnetic fields, including orientation and strength, within the interstellar medium is vital but notoriously difficult. However, recent advances in our understanding of anisotropic magnetohydrodynamic (MHD) turbulence demonstrate that MHD turbulence and 3D magnetic fields leave their imprints on the intensity features of spectroscopic observations. Leveraging these theoretical frameworks, we propose a novel Convolutional Neural Network (CNN) model to extract this embedded information, enabling the probe of 3D magnetic fields. This model examines the plane-of-the-sky magnetic field orientation (ϕ), the magnetic field’s inclination angle (γ) relative to the line-of-sight, and the total magnetization level (M$$_{\rm A}^{-1}$$) of the cloud. We train the model using synthetic emission lines of 13CO (J = 1–0) and C18O (J = 1–0), generated from 3D MHD simulations that span conditions from sub-Alfvénic to super-Alfvénic molecular clouds. Our tests confirm that the CNN model effectively reconstructs the 3D magnetic field topology and magnetization. The median uncertainties are under 5° for both ϕ and γ, and less than 0.2 for MA in sub-Alfvénic conditions (MA ≈ 0.5). In super-Alfvénic scenarios (MA ≈ 2.0), they are under 15° for ϕ and γ, and 1.5 for MA. We applied this trained CNN model to the L1478 molecular cloud. Results show a strong agreement between the CNN-predicted magnetic field orientation and that derived from Planck 353 GHz polarization. The CNN approach enabled us to construct the 3D magnetic field map for L1478, revealing a global inclination angle of ≈76° and a global MA of ≈1.07.
more »
« less
Application of Convolutional Neural Networks to Predict Magnetic Fields’ Directions in Turbulent Clouds
Abstract We adopt the deep learning methodcasi-3d(convolutional approach to structure identification-3D) to infer the orientation of magnetic fields in sub-/trans-Alfvénic turbulent clouds from molecular line emission. We carry out magnetohydrodynamic simulations with different magnetic field strengths and use these to generate synthetic observations. We apply the 3D radiation transfer coderadmc-3dto model12CO and13CO (J = 1−0) line emission from the simulated clouds and then train acasi-3dmodel on these line emission data cubes to predict magnetic field morphology at the pixel level. The trainedcasi-3dmodel is able to infer magnetic field directions with a low error (≲10° for sub-Alfvénic samples and ≲30° for trans-Alfvénic samples). We further test the performance ofcasi-3don a real sub-/trans- Alfvénic region in Taurus. Thecasi-3dprediction is consistent with the magnetic field direction inferred from Planck dust polarization measurements. We use our developed methods to produce a new magnetic field map of Taurus that has a three times higher angular resolution than the Planck map.
more »
« less
- Award ID(s):
- 2009674
- PAR ID:
- 10569824
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 942
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 95
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We adopt the deep learning method casi-3d (Convolutional Approach to Structure Identification-3D) to systemically identify protostellar outflows in 12 CO and 13 CO observations of the nearby molecular clouds, Ophiuchus, Taurus, Perseus, and Orion. The total outflow masses are 267 M ⊙ , 795 M ⊙ , 1305 M ⊙ , and 6332 M ⊙ for Ophiuchus, Taurus, Perseus, and Orion, respectively. We show the outflow mass in each cloud is linearly proportional to the total number of young stellar objects. The estimated total 3D deprojected outflow energies are 9 × 10 45 erg, 6 × 10 46 erg, 1.2 × 10 47 erg, and 6 × 10 47 erg for Ophiuchus, Taurus, Perseus, and Orion, respectively. The energy associated with outflows is sufficient to offset turbulent dissipation at the current epoch for all four clouds. All clouds also exhibit a break point in the spatial power spectrum of the outflow prediction map, which likely corresponds to the typical outflow mass and energy injection scale.more » « less
-
Abstract We define a sample of 200 protostellar outflows showing blue- and redshifted CO emission in the nearby molecular clouds Ophiuchus, Taurus, Perseus, and Orion, to investigate the correlation between outflow orientations and local, but relatively large-scale, magnetic field directions traced by Planck 353 GHz dust polarization. At high significance ( p ∼ 10 −4 ), we exclude a random distribution of relative orientations and find that there is a preference for alignment of projected plane of sky outflow axes with magnetic field directions. The distribution of relative position angles peaks at ∼30° and exhibits a broad dispersion of ∼50°. These results indicate that magnetic fields have dynamical influence in regulating the launching and/or propagation directions of outflows. However, the significant dispersion around perfect alignment orientation implies that there are large measurement uncertainties and/or a high degree of intrinsic variation caused by other physical processes, such as turbulence or strong stellar dynamical interactions. Outflow to magnetic field alignment is expected to lead to a correlation in the directions of nearby outflow pairs, depending on the degree of order of the field. Analyzing this effect, we find limited correlation, except on relatively small scales ≲0.5 pc. Furthermore, we train a convolutional neural network to infer the inclination angle of outflows with respect to the line of sight and apply it to our outflow sample to estimate their full 3D orientations. We find that the angles between outflow pairs in 3D space also show evidence of small-scale alignment.more » « less
-
null (Ed.)ABSTRACT In the cold neutral medium, high out-of-equilibrium temperatures are created by intermittent dissipation processes, including shocks, viscous heating, and ambipolar diffusion. The high-temperature excursions are thought to explain the enhanced abundance of CH+ observed along diffuse molecular sightlines. Intermittent high temperatures should also have an impact on H2 line luminosities. We carry out simulations of magnetohydrodynamic (MHD) turbulence in molecular clouds including heating and cooling, and post-process them to study H2 line emission and hot-gas chemistry, particularly the formation of CH+. We explore multiple magnetic field strengths and equations of state. We use a new H2 cooling function for $$n_{\text{H}}\le 10^5\, {\text{cm}}^{-3}$$, $$T\le 5000\, {\text{K}}$$, and variable H2 fraction. We make two important simplifying assumptions: (i) the H2/H fraction is fixed everywhere and (ii) we exclude from our analysis regions where the ion–neutral drift velocity is calculated to be greater than 5 km s−1. Our models produce H2 emission lines in accord with many observations, although extra excitation mechanisms are required in some clouds. For realistic root-mean-square (rms) magnetic field strengths (≈10 μG) and velocity dispersions, we reproduce observed CH+ abundances. These findings contrast with those of Valdivia et al. (2017) Comparison of predicted dust polarization with observations by Planck suggests that the mean field is ≳5 µG, so that the turbulence is sub-Alfvénic. We recommend future work treating ions and neutrals as separate fluids to more accurately capture the effects of ambipolar diffusion on CH+ abundance.more » « less
-
ABSTRACT The role played by magnetic field during star formation is an important topic in astrophysics. We investigate the correlation between the orientation of star-forming cores (as defined by the core major axes) and ambient magnetic field directions in (i) a 3D magnetohydrodynamic simulation, (ii) synthetic observations generated from the simulation at different viewing angles, and (iii) observations of nearby molecular clouds. We find that the results on relative alignment between cores and background magnetic field in synthetic observations slightly disagree with those measured in fully 3D simulation data, which is partly because cores identified in projected 2D maps tend to coexist within filamentary structures, while 3D cores are generally more rounded. In addition, we examine the progression of magnetic field from pc to core scale in the simulation, which is consistent with the anisotropic core formation model that gas preferably flows along the magnetic field towards dense cores. When comparing the observed cores identified from the Green Bank Ammonia Survey and Planck polarization-inferred magnetic field orientations, we find that the relative core–field alignment has a regional dependence among different clouds. More specifically, we find that dense cores in the Taurus molecular cloud tend to align perpendicular to the background magnetic field, while those in Perseus and Ophiuchus tend to have random (Perseus) or slightly parallel (Ophiuchus) orientations with respect to the field. We argue that this feature of relative core–field orientation could be used to probe the relative significance of the magnetic field within the cloud.more » « less
An official website of the United States government

