skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lateral Fluxes Drive Basal Melting Beneath Thwaites Eastern Ice Shelf, West Antarctica
Abstract Thwaites Glacier is one of the fastest‐changing ice‐ocean systems in Antarctica. Basal melting beneath Thwaites' floating ice shelf, especially around pinning points and at the grounding line, sets the rate of ice loss and Thwaites' contribution to global sea‐level rise. The rate of basal melting is controlled by the transport of heat into and through the ice–ocean boundary layer toward the ice base. Here we present the first turbulence observations from the grounding line of Thwaites Eastern Ice Shelf. We demonstrate that contrary to expectations, the turbulence‐driven vertical flux of heat into the ice–ocean boundary layer is insufficient to sustain the basal melt rate. Instead, most of the heat required must be delivered by lateral fluxes driven by the large‐scale advective circulation. Lateral processes likely dominate beneath the most unstable warm‐cavity ice shelves, and thus must be fully incorporated into parameterizations of ice shelf basal melting.  more » « less
Award ID(s):
2151295
PAR ID:
10569841
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
52
Issue:
3
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Thwaites Glacier is one of the fastest-changing ice–ocean systems in Antarctica 1–3 . Much of the ice sheet within the catchment of Thwaites Glacier is grounded below sea level on bedrock that deepens inland 4 , making it susceptible to rapid and irreversible ice loss that could raise the global sea level by more than half a metre 2,3,5 . The rate and extent of ice loss, and whether it proceeds irreversibly, are set by the ocean conditions and basal melting within the grounding-zone region where Thwaites Glacier first goes afloat 3,6 , both of which are largely unknown. Here we show—using observations from a hot-water-drilled access hole—that the grounding zone of Thwaites Eastern Ice Shelf (TEIS) is characterized by a warm and highly stable water column with temperatures substantially higher than the in situ freezing point. Despite these warm conditions, low current speeds and strong density stratification in the ice–ocean boundary layer actively restrict the vertical mixing of heat towards the ice base 7,8 , resulting in strongly suppressed basal melting. Our results demonstrate that the canonical model of ice-shelf basal melting used to generate sea-level projections cannot reproduce observed melt rates beneath this critically important glacier, and that rapid and possibly unstable grounding-line retreat may be associated with relatively modest basal melt rates. 
    more » « less
  2. Abstract Rift propagation, rather than basal melt, drives the destabilization and disintegration of the Thwaites Eastern Ice Shelf. Since 2016, rifts have episodically advanced throughout the central ice-shelf area, with rapid propagation events occurring during austral spring. The ice shelf's speed has increased by ~70% during this period, transitioning from a rate of 1.65 m d−1in 2019 to 2.85 m d−1by early 2023 in the central area. The increase in longitudinal strain rates near the grounding zone has led to full-thickness rifts and melange-filled gaps since 2020. A recent sea-ice break out has accelerated retreat at the western calving front, effectively separating the ice shelf from what remained of its northwestern pinning point. Meanwhile, a distributed set of phase-sensitive radar measurements indicates that the basal melting rate is generally small, likely due to a widespread robust ocean stratification beneath the ice–ocean interface that suppresses basal melt despite the presence of substantial oceanic heat at depth. These observations in combination with damage modeling show that, while ocean forcing is responsible for triggering the current West Antarctic ice retreat, the Thwaites Eastern Ice Shelf is experiencing dynamic feedbacks over decadal timescales that are driving ice-shelf disintegration, now independent of basal melt. 
    more » « less
  3. Abstract West Antarctic ice-shelf thinning is primarily caused by ocean-driven basal melting. Here we assess ocean variability below Thwaites Eastern Ice Shelf (TEIS) and reveal the importance of local ocean circulation and sea-ice. Measurements obtained from two sub-ice-shelf moorings, spanning January 2020 to March 2021, show warming of the ice-shelf cavity and an increase in meltwater fraction of the upper sub-ice layer. Combined with ocean modelling results, our observations suggest that meltwater from Pine Island Ice Shelf feeds into the TEIS cavity, adding to horizontal heat transport there. We propose that a weakening of the Pine Island Bay gyre caused by prolonged sea-ice cover from April 2020 to March 2021 allowed meltwater-enriched waters to enter the TEIS cavity, which increased the temperature of the upper layer. Our study highlights the sensitivity of ocean circulation beneath ice shelves to local atmosphere-sea-ice-ocean forcing in neighbouring open oceans. 
    more » « less
  4. Knowledge gaps about how the ocean melts Antarctica’s ice shelves, borne from a lack of observations, lead to large uncertainties in sea level predictions. Using high-resolution maps of the underside of Dotson Ice Shelf, West Antarctica, we reveal the imprint that ice shelf basal melting leaves on the ice. Convection and intermittent warm water intrusions form widespread terraced features through slow melting in quiescent areas, while shear-driven turbulence rapidly melts smooth, eroded topographies in outflow areas, as well as enigmatic teardrop-shaped indentations that result from boundary-layer flow rotation. Full-thickness ice fractures, with bases modified by basal melting and convective processes, are observed throughout the area. This new wealth of processes, all active under a single ice shelf, must be considered to accurately predict future Antarctic ice shelf melt. 
    more » « less
  5. Abstract Ice shelves regulate the ice‐ocean boundary by buttressing the flux of grounded ice into the ocean and are vulnerable to basal melt, which can lead to ice‐shelf thinning and loss of buttressing. Localized, enhanced basal melt can form basal channels, which may impact ice‐shelf stability. Here we investigate the evolution of the Getz Ice Shelf Basal Channel (GISBC) in West Antarctica using a novel suite of geophysical data, including Reference Elevation Model of Antarctica (REMA) digital elevation models, ICESat‐1 and ‐2 altimetry, Operation IceBridge altimetry and radar, and InSAR‐derived ice flow velocities. We describe basal‐channel and ice‐shelf change in both Eulerian and Lagrangian frameworks and document changes in the channel's shape and its lateral motion and estimate basal melting. We find a high degree of spatial and temporal variability in GISBC evolution, with several locations of active basal incision. Incision occurs at rates of up to 22 m a−1at the head of the channel, which is extending toward the grounding line at a rate of ~1 km a−1. Freeboard heights over areas of rapid basal incision are out of hydrostatic equilibrium. The GISBC is also migrating to the northwest, perpendicular to the northeasterly ice flow direction, at an average rate of 70–80 m a−1. The spatiotemporal variability of evolution of the GISBC motivates further characterization of basal channels and their impact on ice‐shelf stability, so that these effects may more readily be incorporated in ice‐ocean models predicting ice flow and sea‐level rise. 
    more » « less