skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gas exchange velocities ( k 600 ), gas exchange rates ( K 600 ), and hydraulic geometries for streams and rivers derived from the NEON Reaeration field and lab collection data product (DP1.20190.001)
Abstract. Air–water gas exchange is essential to understanding and quantifying many biogeochemical processes in streams and rivers, including greenhouse gas emissions and metabolism. Gas exchange depends on two factors, which are often quantified separately: (1) the air–water concentration gradient of the gas and (2) the gas exchange velocity.  There are fewer measurements of gas exchange velocity compared to concentrations in streams and rivers, which limits accurate characterization of air–water gas exchange (i.e., flux rates). The National Ecological Observatory Network (NEON) conducts SF6 gas-loss experiments in 22 of their 24 wadeable streams using standardized methods across all experiments and sites, and publishes raw concentration data from these experiments on the NEON data portal. NEON also conducts NaCl injections that can be used to characterize hydraulic geometry at all 24 wadeable streams. These NaCl injections are conducted both as part of the gas-loss experiments and separately. Here, we use these data to estimate gas exchange and water velocity using the reaRate R package. The dataset presented includes estimates of hydraulic parameters, cleaned raw concentration SF6 tracer-gas data (including removing outliers and failed experiments), estimated SF6 gas-loss rates, normalized gas exchange velocities (k600; m d−1) and normalized depth-dependent gas exchange rates (K600; d−1). This dataset provides one of the largest compilations of gas-loss experiments (n=339) in streams to date. This dataset is unique in that it contains gas exchange estimates from repeated experiments in geographically diverse streams across a range of discharges. In addition, this dataset contains information on the hydraulic geometry of all 24 NEON wadeable streams, which will support future research using NEON aquatic data. This dataset is a valuable resource that can be used to explore both within- and across-reach variability in the hydraulic geometry and gas exchange velocity in streams. The data are available at https://doi.org/10.6073/pasta/18dcc1871ee71cf0b69f2ee4082839d0 (Aho et al., 2024), and the reaRate R package code is available at https://doi.org/10.5281/zenodo.12786089 (Cawley et al., 2024).  more » « less
Award ID(s):
2217817
PAR ID:
10569900
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Copernicus Publications
Date Published:
Journal Name:
Earth System Science Data
Volume:
16
Issue:
12
ISSN:
1866-3516
Page Range / eLocation ID:
5563 to 5578
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset contains estimates of gas exchange velocity, gas exchange rate, and hydraulic parameters for streams calculated from tracer-gas experiments and conservative tracer injections collected by the National Ecological Observatory Network (NEON). All input data were collected by NEON and is available on the NEON data portal at https://data.neonscience.org. Specifically, the NEON Reaeration field and lab collection data product (DP1.20190.001) was used to calculate these estimates. Gas exchange was estimated in two ways: first, following an unpooled frequentist approach and second, following a partially pooled Bayesian approach. In addition, a salt-correction was applied to gas exchange estimates for sites where it was possible and necessary. All estimates of gas exchange are included in the file gasExchange_ds.csv. A recommended selection of these estimates is included in the dataset (best_k600_mPerDay and best_K600_mPerDay). The stanfit objects used for the partially pooled Bayesian approach are also included as site-specific model objects for gas exchange velocities and rates. In addition, water velocity was calculated from conservative tracer injections, and mean water depth was calculated from these water velocity estimates and measurements of wetted width and water discharge. All hydraulic parameters are included in the file hydraulics_ds.csv. All processing code is available in the reaRates R package. NEON is sponsored by the National Science Foundation (NSF) and operated under cooperative agreement by Battelle. This material is based in part upon work supported by NSF through the NEON Program. 
    more » « less
  2. Abstract While variation in mean annual precipitation (MAP) of the native habitat of a species has been shown to determine the ability of a species to resist a hydraulic decrease during drought, it remains unknown whether these variations in MAP also influence the ability of a species to recover and survive drought. Leaf hydraulic and gas exchange recovery following drought and the underlying mechanisms of these responses in sixCaraganaspecies from habitats along a large precipitation gradient were investigated during rehydration in a common garden. The gas exchange of species from arid habitats recovered more rapidly during rehydration after mild, moderate and severe drought stress treatments than species from humid habitats. The recovery of gas exchange was not associated with foliar abscisic acid concentration, but tightly related to the recovery of leaf hydraulic conductance (Kleaf). The recovery ofKleafwas associated with the loss ofKleafduring dehydration under mild and moderate drought stress, and to leaf xylem embolism formation under severe drought stress. Results pointed to the different ability to recover in gas exchange in sixCaraganaspecies post‐drought is associated with the MAP of the species in its native habitat. 
    more » « less
  3. Abstract Assessments of riverine ecosystem health and water quality require knowledge of how headwater streams transport and transform nutrients. Estimates of nutrient demand at the watershed scale are commonly inferred from reach‐scale solute injections, which are typically reported as uptake velocities (vf). Multiple interacting processes controlvf, making it challenging to predict howvfresponds to physical changes in the stream. In this study, we linkvfto a continuous time random walk model to quantify howvfis controlled by in‐stream (velocity, dispersion, and benthic reaction) and hyporheic processes (exchange rate, residence times, and hyporheic reaction). We fit the model to conservative (NaCl) and nitrate (NO3‐N) pulse tracer injections in unshaded replicate streams at the Notre Dame Linked Experimental Ecosystem Facility, which differed only in substrate size and distribution. Experiments were conducted over the first 25 days of biofilm colonization to examine how the interaction between substrate type and biofilm growth influenced modeled processes andvf. Model fits of benthic reaction rates were ∼8× greater than hyporheic reaction rates for all experiments and did not vary with substrate type or over time. High benthic reactivity was associated with filamentous green algae coverage on the streambed, which dominated total algal biomass. Finally,vfwas most sensitive to benthic reaction rate and stream velocity, and sensitivity varied with stream conditions due to its nonlinear dependence on all modeled processes. Together, these results demonstrate how reach‐scale nutrient demand reflects the relative contributions of biotic and abiotic processes in the benthic layer and the hyporheic zone. 
    more » « less
  4. Abstract Understanding the impact of altitude on leaf hydraulic, gas exchange, and economic traits is crucial for comprehending vegetation properties and ecosystem functioning. This knowledge also helps to elucidate species' functional strategies regarding their vulnerability or resilience to global change effects in alpine environments. Here, we conducted a global study of dataset encompassing leaf hydraulic, gas exchange, and economic traits for 3391 woody species. The results showed that high‐altitude species possessed greater hydraulic safety (KleafP50), higher water use efficiency (WUEi) and conservative resource use strategy such as higher leaf mass per area, longer leaf lifespan, lower area‐based leaf nitrogen and phosphorus contents, and lower rates of photosynthesis and dark respiration. Conversely, species at lower altitudes exhibited lower hydraulic safety (KleafP50), lower water use efficiency (WUEi) and an acquisitive resource use strategy. These global patterns of leaf traits in relation to altitude reveal the strategies that alpine plants employ for hydraulic safety, water use efficiency, and resource, which have important implications for predicting forest productivity and acclimation to rapid climate change. 
    more » « less
  5. Salmonids frequently adapt their feeding and movement strategies to cope with seasonally fluctuating stream environments. Oncorhynchus mykiss tend to drift-forage in higher velocity habitat than other salmonids, yet their presence in streams with seasonally low velocity and drift suggests behavioral flexibility. We combined 3D videogrammetry with measurements of invertebrate drift and stream hydraulics to investigate the drivers of O. mykiss foraging mode and movement during the seasonal recession in a California stream. From May to July (2016), foraging movement rate increased as prey concentration and velocity declined; however, movement decreased in August as pools became low and still. In May, 80% of O. mykiss were drift-foraging, while by July, over 70% used search or benthic-foraging modes. Velocity and riffle crest depth were significant predictors of foraging mode, while drift concentration was a poor univariate predictor. However, top-ranked additive models included both hydraulic variables and drift concentration. A drift-foraging bioenergetic model was a poor predictor of foraging mode. We suggest that infall and benthic prey, as well as risk aversion, may influence late-summer foraging decisions. 
    more » « less