skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Uncertainty-Aware Hardware Trojan Detection Using Multimodal Deep Learning
The risk of hardware Trojans being inserted at various stages of chip production has increased in a zero-trust fabless era. To counter this, various machine learning solutions have been developed for the detection of hardware Trojans. While most of the focus has been on either a statistical or deep learning approach, the limited number of Trojan-infected benchmarks affects the detection accuracy and restricts the possibility of detecting zero-day Trojans. To close the gap, we first employ generative adversarial networks to amplify our data in two alternative representation modalities: a graph and a tabular, which ensure a representative distribution of the dataset. Further, we propose a multimodal deep learning approach to detect hardware Trojans and evaluate the results from both early fusion and late fusion strategies. We also estimate the uncertainty quantification metrics of each prediction for risk-aware decision-making. The results not only validate the effectiveness of our suggested hardware Trojan detection technique but also pave the way for future studies utilizing multimodality and uncertainty quantification to tackle other hardware security problems.  more » « less
Award ID(s):
2245247
PAR ID:
10569956
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-3-9819263-8-5
Page Range / eLocation ID:
1-6
Format(s):
Medium: X
Location:
Valencia, Spain
Sponsoring Org:
National Science Foundation
More Like this
  1. As the semiconductor industry has shifted to a fabless paradigm, the risk of hardware Trojans being inserted at various stages of production has also increased. Recently, there has been a growing trend toward the use of machine learning solutions to detect hardware Trojans more effectively, with a focus on the accuracy of the model as an evaluation metric. However, in a high-risk and sensitive domain, we cannot accept even a small misclassification. Additionally, it is unrealistic to expect an ideal model, especially when Trojans evolve over time. Therefore, we need metrics to assess the trustworthiness of detected Trojans and a mechanism to simulate unseen ones. In this paper, we generate evolving hardware Trojans using our proposed novel conformalized generative adversarial networks and offer an efficient approach to detecting them based on a non-invasive algorithm-agnostic statistical inference framework that leverages the Mondrian conformal predictor. The method acts like a wrapper over any of the machine learning models and produces set predictions along with uncertainty quantification for each new detected Trojan for more robust decision-making. In the case of a NULL set, a novel method to reject the decision by providing a calibrated explainability is discussed. The proposed approach has been validated on both synthetic and real chip-level benchmarks and proven to pave the way for researchers looking to find informed machine learning solutions to hardware security problems. 
    more » « less
  2. The globalized semiconductor supply chain significantly increases the risk of exposing System-on-Chip (SoC) designs to malicious implants, popularly known as hardware Trojans. Traditional simulation-based validation is unsuitable for detection of carefully-crafted hardware Trojans with extremely rare trigger conditions. While machine learning (ML) based Trojan detection approaches are promising due to their scalability as well as detection accuracy, ML-based methods themselves are vulnerable from Trojan attacks. In this paper, we propose a robust backdoor attack on ML-based Trojan detection algorithms to demonstrate this serious vulnerability. The proposed framework is able to design an AI Trojan and implant it inside the ML model that can be triggered by specific inputs. Experimental results demonstrate that the proposed AI Trojans can bypass state-of-the-art defense algorithms. Moreover, our approach provides a fast and cost-effective solution in achieving 100% attack success rate that significantly outperforms state-of-the art approaches based on adversarial attacks. 
    more » « less
  3. Abstract The threat of (HTs) and their detection is a widely studied field. While the effort for inserting a Trojan into an (ASIC) can be considered relatively high, especially when trusting the chip manufacturer, programmable hardware is vulnerable to Trojan insertion even after the product has been shipped or during usage. At the same time, detecting dormant HTs with small or zero-overhead triggers and payloads on these platforms is still a challenging task, as the Trojan might not get activated during the chip verification using logical testing or physical measurements. In this work, we present a novel Trojan detection approach based on a technique known from (IC) failure analysis, capable of detecting virtually all classes of dormant Trojans. Using (LLSI), we show how supply voltage modulations can awaken inactive Trojans, making them detectable using laser voltage imaging techniques. Therefore, our technique does not require triggering the Trojan. To support our claims, we present three case studies on 28 nm and 20 nm SRAM- and flash-based (FPGAs). We demonstrate how to detect with high confidence small changes in sequential and combinatorial logic as well as in the routing configuration of FPGAs in a non-invasive manner. Finally, we discuss the practical applicability of our approach on dormant analog Trojans in ASICs. 
    more » « less
  4. null (Ed.)
    Due to globalized semiconductor supply chain, there is an increasing risk of exposing System-on-Chip (SoC) designs to malicious implants, popularly known as hardware Trojans. Unfortunately, traditional simulation-based validation using millions of test vectors is unsuitable for detecting stealthy Trojans with extremely rare trigger conditions due to exponential input space complexity of modern SoCs. There is a critical need to develop efficient Trojan detection techniques to ensure trustworthy SoCs. While there are promising test generation approaches, they have serious limitations in terms of scalability and detection accuracy. In this paper, we propose a novel logic testing approach for Trojan detection using an effective combination of testability analysis and reinforcement learning. Specifically, this paper makes three important contributions. 1) Unlike existing approaches, we utilize both controllability and observability analysis along with rareness of signals to significantly improve the trigger coverage. 2) Utilization of reinforcement learning considerably reduces the test generation time without sacrificing the test quality. 3) Experimental results demonstrate that our approach can drastically improve both trigger coverage (14.5% on average) and test generation time (6.5 times on average) compared to state-of-the-art techniques. 
    more » « less
  5. Due to the globalization of Integrated Circuit supply chain, hardware Trojans and the attacks that can trigger them have become an important security issue. One type of hardware Trojans leverages the “don’t care transitions” in Finite-state Machines (FSMs) of hardware designs. In this article, we present a symbolic approach to detecting don’t care transitions and the hidden Trojans. Our detection approach works at both register-transfer level (RTL) and gate level, does not require a golden design, and works in three stages. In the first stage, it explores the reachable states. In the second stage, it performs an approximate analysis to find the don’t care transitions and any discrepancies in the register values or output lines due to don’t care transitions. The second stage can be used for both predicting don’t care triggered Trojans and for guiding don’t care aware reachability analysis. In the third stage, it performs a state-space exploration from reachable states that have incoming don’t care transitions to explore the Trojan payload and to find behavioral discrepancies with respect to what has been observed in the first stage. We also present a pruning technique based on the reachability of FSM states. We present a methodology that leverages both RTL and gate-level for soundness and efficiency. Specifically, we show that don’t care transitions and Trojans that leverage them must be detected at the gate-level, i.e., after synthesis has been performed, for soundness. However, under specific conditions, Trojan payload exploration can be performed more efficiently at RTL. Additionally, the modular design of our approach also provides a fast Trojan prediction method even at the gate level when the reachable states of the FSM is known a priori . Evaluation of our approach on a set of benchmarks from OpenCores and TrustHub and using gate-level representation generated by two synthesis tools, YOSYS and Synopsis Design Compiler (SDC), shows that our approach is both efficient (up to 10× speedup w.r.t. no pruning) and precise (0% false positives both at RTL and gate-level netlist) in detecting don’t care transitions and the Trojans that leverage them. Additionally, the total analysis time can achieve up to 1.62× (using YOSYS) and 1.92× (using SDC) speedup when synthesis preserves the FSM structure, the foundry is trusted, and the Trojan detection is performed at RTL. 
    more » « less