skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 1:100 Scaled Buildings with Perpendicular Surfaces:Subtitle
This dataset includes files from an extensive wind tunnel study of stepped-roof buildings conducted at the Wall of Wind facility at Florida International University. The aim of the study was to clarify the key factors that affect aerodynamic forces on complex architectural shapes. While ASCE7-22 offers a guideline for wind loads on building components and roofs, it falls short of providing the detailed data needed by engineers to calculate wind loads on the surfaces of stepped-roof buildings. This study fills that gap. The main subject under investigation was the impact of wind loads on different building geometries such as stepped roofs, U-shaped buildings, podium structures, and low-rise buildings with carport extensions. This involved a detailed examination of how various structural features influenced wind pressure distribution, with a specific emphasis on understanding the behavior of wind forces on these models. The outcomes include a series of detailed findings on wind pressure coefficients for each building model. These results offer insights into the wind load characteristics for different architectural forms, contributing to a better understanding of structural behavior under wind forces. The study findings will furnish additional data to enable engineers and scholars to more accurately assess and comprehend wind loads on buildings with multi-level roofs. The dataset includes diagrams of each model’s geometry and wind pressure data. The data highlighted key areas where wind pressures were most significant and how different building features either mitigated or exacerbated these pressures. The data gathered from this study can be reused in multiple ways. It can serve as a reference for designing wind-resilient buildings, particularly in regions susceptible to strong winds or hurricanes. The empirical data can also aid in validating and refining computational models for predicting wind loads on buildings. Additionally, it can be used in academic research for further exploration into wind engineering, urban planning, and architectural design, potentially leading to innovations in building safety standards and construction practices.  more » « less
Award ID(s):
1841503
PAR ID:
10569972
Author(s) / Creator(s):
;
Publisher / Repository:
Designsafe-CI
Date Published:
Subject(s) / Keyword(s):
peak negative pressure coefficients peak positive pressure coefficients
Format(s):
Medium: X
Institution:
Wall of Wind - Florida International University
Sponsoring Org:
National Science Foundation
More Like this
  1. The complex dynamics of vertically separated flows pose a significant challenge when it comes to assessing the wind loads on multi-level structures, demanding a nuanced understanding of the intricate interplay between atmospheric conditions and architectural designs. Previous studies and wind loading standards provide insufficient guidance for designing wind pressures on multi-level buildings. The behavior of wind around perpendicularly attached surfaces is not quite similar to that of individual flat roofs or walls. When a body is composed of several surfaces with right or oblique angles, the separated flow from surfaces and their interactions will cause complex flow patterns around each surface. A wind tunnel experimental study was carried out on bluff bodies with attached flat plates and other adjacent bluff bodies with different heights to examine the wind-induced pressures on such complex shapes. Mean and peak pressure coefficients were measured to determine the flow interaction patterns and location of localized peak pressures. The results were compared to the Tokyo Polytechnic University Aerodynamic Database of isolated low-rise buildings without eaves. The research findings indicated that there was a noteworthy disparity between the minimum and maximum values and locations of peak pressures on both the wall and roof surfaces of the models used in this study, as compared to the results obtained by the Tokyo Polytechnic University. Moreover, the study conceivably pointed to the difference between the peak negative and positive pressure coefficient locations with the ASCE 7-22 wind loading zones. The peak suction zones were affected by the combined flows at perpendicular faces, and as a result, different wind load zones were obtained dissimilar to those introduced by ASCE 7-22. Wind loading standards may need to be modified to account for the wind pressures on complex building structures with an emphasis on the location of the peak negative pressure zones. 
    more » « less
  2. Wind fragility curves for roof sheathing were developed for single-family building models to investigate the effects of roof shape and roof pitch on the wind performance of roof sheathing. For gable roofs, it was found that more complex roof shapes are more likely to suffer roof sheathing damage when subjected to high winds. The probability of no roof sheathing failure can be up to 36% higher for a simple gable roof than for a complex gable roof. For hip roofs with different configurations, variation in roof shape has minimal effect on roof sheathing fragility. Roof pitch effects were also evaluated for 10 pitch angles, ranging from 14° to 45°. Results suggest that for roof pitches smaller than 27°, the effects of this angle are more substantial on the performance of gable roofs than on hip roofs. For gable roofs, the probability of no roof sheathing failure can be up to 23% higher for a 23° roof pitch than that for an 18° roof pitch. Furthermore, the inclusion of complex roof shapes in a regional hurricane loss model for New Hanover County, North Carolina, accounted for a 44% increase in estimated annual expected losses from roof sheathing damages compared to a scenario in which all roofs are assumed to have rectangular roof shapes. Therefore, to avoid an underestimation of roof damages due to high-wind impact, the inclusion of complex roof geometries in hurricane loss modeling is strongly recommended. 
    more » « less
  3. Boundary Layer Wind Tunnel (BLWT) facilities are commonly used for assessing wind loads on structures. Although BLWT facilities routinely match 1st and 2nd-order wind profile models, evidence suggests that turbulence in the roughness sublayer and the inertial sublayer exhibit non-Gaussian higher-order properties. These non-Gaussian properties can influence peak wind pressures, which govern certain structural limit states and play an important role in design. In the first part of this project, Machine learning (ML) methods are employed to identify relationships between roughness element configurations and higher-order statistical properties of the wind field. A semi-automated framework with an active learning portion and a wind tunnel experimental procedure is developed. The learning framework adaptively selects roughness profiles and launches new experiments to identify differing profiles with second-order equivalent flow as quantified by turbulence intensity. The premise is that second-order equivalent wind fields can differ in higher-order properties and therefore extreme value derived peak loads may differ. Over the course of this project, the turbulence profiles from hundreds of different Terraformer roughness element configurations were collected, providing a very rich dataset of boundary layer flow as a function of upwind fetch. Experiment 1 provides the metadata to describe and interpret measured wind profiles at the UFBLWT for a data set collected for the Benchmark experiments and 3 different phases: 1) Sinusoidal waves experiments, 2) Shape study experiments and, 3) Random field experiments. Experiment 2 of this dataset presents the results of experiments conducted in the UFBLWT, with a focus on measuring turbulence characteristics and pressure coefficients on a bluff body under varying terrain roughness configurations. The dataset provides valuable insights into the influence of upwind fetch and surface roughness on wind-induced forces, contributing to improved modeling and prediction of wind loads on structures. Based on the Terraformer configurations in experiment 1, select configurations (Benchmark and Phase 1 Terraformer configurations only) were chosen for bluff body experiments, along with additional approach turbulence measurements at a lateral location to the model. This dataset includes three key components for Benchmark and Phase 1 Terraformer configurations: reference wind velocity (uRef), lateral approach flow profiles (LatFlow), and pressure coefficients (Cpdata) on the bluff body. 
    more » « less
  4. This study explores the complementary effects of side and corner modification on the aerodynamic behavior for high-rise buildings across representative design wind speeds. Twelve doubly-symmetric prismatic models were examined using high-frequency force balance (HFFB) wind tunnel testing at the University of Florida. The effectiveness of the aerodynamic strategies was quantified using roof drift and roof acceleration under different design wind speeds covering serviceability and survivability. The results show that both corner and side modifications can achieve promising aerodynamic performance under high design wind speeds. However, the effectiveness of the aerodynamic strategies is significantly reduced under low design wind speeds. With a corner modification strategy, the vortex shedding frequency is increased, leading to worse across-wind response at lower design wind speeds when compared to the square benchmark model. To address this issue, side modifications (i.e., side protrusions) can be used to preserve the vortex shedding frequency and achieve competitive aerodynamic performance while simultaneously maintaining the floor area and geometry. This research explores new aerodynamic modification options for owners, architects, and structural engineers with the aim of better aerodynamic performance for high-rise buildings without compromising other design objectives. 
    more » « less
  5. The impact of climate change and global warming makes it imperative to seek sustainable solutions for the built environment. To facilitate the design of future sustainable buildings, wind tunnel tests are conducted in this study to investigate the flow characteristics and wind energy potential over a flat building roof with different edge configurations. Specifically, this study addresses the effect of parapet walls and roof edge-mounted solar panels on the wind flow over a flat-roof tall building. The results show that parapet walls generally slow down the wind speed and increase turbulence intensity as well as skewness angle, which compromises the efficiency of traditional turbine-based wind energy harvesting. On the other hand, the presence of solar panels on the roof edge (or on the top of the parapet wall) further alters flow separation and has the potential to enhance wind energy harvesting over the roof, especially for the solar panel inclined at 30°. In addition to providing valuable data for validating computational fluid dynamics (CFD) simulations, this study could also help to guide the design of wind energy harvesting devices on the building roof and explore the promising synergy with solar panels. 
    more » « less